Abstract

We introduce an improved fiber figure of merit (FoM) in order to compare different fiber types used in uncompensated links for transmission of coherently-received modulation formats. The role of fiber dispersion in enhancing system performance is shown and verified by simulations and experiments, confirming the need for the inclusion of dispersion parameter in a FoM definition allowing to compare fiber types with relevant different dispersion parameters. Applicability of the proposed FoM has been demonstrated for channel spacing from the Nyquist limit up to 5/3 the symbol rate.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pilipetskii, “Nonlinearity management and compensation in transmission systems,” OFC 2009, paper OTuL5.
  2. Y. Yamamoto, M. Hirano, and T. Sasaki, “A new class of optical fiber to support large capacity transmission,” OFC 2011, paper OWA6.
  3. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  4. V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of non-linear effects in 111 Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
    [CrossRef]
  5. D. van den Borne, V. Sleiffer, M. Alfiad, S. Jansen and T. Wuth, “POLMUX-QPSK modulation and coherent detection: the challenge of long-haul 100G transmission,” ECOC 2009, paper 3.4.1.
  6. A. Carena, V. Curri, G. Bosco, R. Cigliutti, E. Torrengo, P. Poggiolini, A.Nespola, D. Zeolla, and F. Forghieri “A novel figure of merit to compare fibers in coherent detection systems with uncompensated links,” ECOC 2011, paper Th.12.LeCervin.5.
  7. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
    [CrossRef]
  8. E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini1, A. Nespola, D. Zeolla, and F. Forghieri. “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” ECOC 2011, paper We.7.B.2.
  9. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “A simple and accurate model for non-linear propagation effects in uncompensated coherent transmission links,” ICTON 2011, paper We.B1.3.

2011 (1)

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

2008 (1)

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of non-linear effects in 111 Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Bosco, G.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

Carena, A.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of non-linear effects in 111 Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

Curri, V.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of non-linear effects in 111 Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

Forghieri, F.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of non-linear effects in 111 Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

Poggiolini, P.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of non-linear effects in 111 Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of non-linear effects in 111 Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

Other (6)

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini1, A. Nespola, D. Zeolla, and F. Forghieri. “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” ECOC 2011, paper We.7.B.2.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “A simple and accurate model for non-linear propagation effects in uncompensated coherent transmission links,” ICTON 2011, paper We.B1.3.

A. Pilipetskii, “Nonlinearity management and compensation in transmission systems,” OFC 2009, paper OTuL5.

Y. Yamamoto, M. Hirano, and T. Sasaki, “A new class of optical fiber to support large capacity transmission,” OFC 2011, paper OWA6.

D. van den Borne, V. Sleiffer, M. Alfiad, S. Jansen and T. Wuth, “POLMUX-QPSK modulation and coherent detection: the challenge of long-haul 100G transmission,” ECOC 2009, paper 3.4.1.

A. Carena, V. Curri, G. Bosco, R. Cigliutti, E. Torrengo, P. Poggiolini, A.Nespola, D. Zeolla, and F. Forghieri “A novel figure of merit to compare fibers in coherent detection systems with uncompensated links,” ECOC 2011, paper Th.12.LeCervin.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

ΔFoM as a function of dispersion, for span length Ls = 100 km, with fiber loss and non-linearity as parameters. Labeled dots represent the fibers listed in Table 1

Fig. 2
Fig. 2

Simulative results of maximum span budget vs. the power per channel for the fibers whose parameters are listed in Table 1 used in the considered 8 spans, PM-QPSK, RS = 30 Gbaud,10 channel system with Δf = Rs. Evaluations of FoM according to Eq. (2) are reported on the graph.

Fig. 3
Fig. 3

Simulative evaluations of ΔFoM for the fibers whose parameters are listed in Table 1 used in the considered 8 spans, PM-QPSK, RS = 30 Gbaud,10 channels system with Δf = 1·Rs up to Δf = 5/3·Rs

Fig. 4
Fig. 4

Simulative (a) and experimental (b) evaluations of maximum span budget for the fibers whose parameters are listed in Table 1 used in the considered 8 spans link, PM-QPSK, RS = 30 Gbaud,10 channels system with Δf = 1.1·Rs (33 GHz). Together with experimental results plotted as points (b), NLI model [9] results are plotted as continuous lines.

Tables (1)

Tables Icon

Table 1 Fiber parameters and ΔFoM comparison with Ls = 100 km.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

μ dB = A max | dB A fiber
FoM = ^ A max | dB A fiber
ΔFoM=FoMFo M ref
OSN R NL = P Tx,ch P ASE + P NLI
P ASE = N s ( A1 )Fhν B n
P NLI ( 2 3 ) 3 π N s γ 2 N ch 2 L eff 2 P Tx,ch 3 log( π 2 | β 2 | L eff N ch 2 R s 2 ) π 2 | β 2 | L eff N ch 2 R s 2 B n R s
L eff =( 1 e 2α L s )/2α
A max 1 2 π R s Fhν ( B n R s N s OSN R target ) 3 2 | β 2 | L eff R s 2 log( | β 2 | L eff R s 2 )+log( π 2 N ch 2 ) γ L eff
FoM=10 log 10 { | β 2 | L eff R s 2 log( | β 2 | L eff R s 2 )+log( π 2 N ch 2 ) }10 log 10 { γ L eff } α dB L s
FoM10 log 10 { | β 2 | L eff }10 log 10 { γ L eff } α dB L s
Fo M 1 =10 log 10 ( γ ) α dB L , s Fo M 2 =10 log 10 ( γ L eff ) α dB L s .

Metrics