Abstract

Measurement of laser intensity inside a femtosecond laser filament is a challenging task. In this work, we suggest a simple way to characterize laser peak intensity inside the filament in air. It is based on the signal ratio measurement of two nitrogen fluorescence lines, namely, 391 nm and 337 nm. Because of distinct excitation mechanisms, the signals of the two fluorescence lines increase with the laser intensity at different orders of nonlinearity. An empirical formula has been deduced according to which laser peak intensity could be simply determined by the fluorescence ratio.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
    [CrossRef] [PubMed]
  2. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
    [CrossRef] [PubMed]
  3. V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
    [CrossRef]
  4. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
    [CrossRef]
  5. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [CrossRef]
  6. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
    [CrossRef]
  7. J. Kasparian and J. P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16(1), 466–493 (2008).
    [CrossRef] [PubMed]
  8. P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
    [CrossRef]
  9. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
  10. H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasi-phase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
    [CrossRef]
  11. G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
    [CrossRef]
  12. A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).
  13. A. Talebpour, A. D. Bandrauk, J. Yang, and S. L. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313(5-6), 789–794 (1999).
    [CrossRef]
  14. A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett. 343(3-4), 345–350 (2001).
    [CrossRef]
  15. H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
    [CrossRef]
  16. A. Talebpour, S. Petit, and S. L. Chin, “Re-focusing during the propagation of a focused femtosecond Ti:Sapphire laser pulse in air,” Opt. Commun. 171(4-6), 285–290 (1999).
    [CrossRef]
  17. S. Akturk, C. D'Amico, M. Franco, A. Couairon, and A. Mysyrowicz, “Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon,” Phys. Rev. A 76(6), 063819 (2007).
    [CrossRef]
  18. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
    [CrossRef] [PubMed]
  19. W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13(15), 5750–5755 (2005).
    [CrossRef] [PubMed]
  20. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, New York, 1995).
  21. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
    [CrossRef] [PubMed]
  22. M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A 37(3), 747–760 (1988).
    [CrossRef] [PubMed]
  23. H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmasinduced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
    [CrossRef]
  24. A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
    [CrossRef]
  25. P. E. Gill and W. Murray, “Algorithms for the solution of the nonlinear least-squares problem,” SIAM J. Numer. Anal. 15(5), 977–992 (1978).
    [CrossRef]
  26. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
    [CrossRef] [PubMed]
  27. P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103(12), 123902 (2009).
    [CrossRef] [PubMed]
  28. P. Polynkin, M. Kolesik, A. Roberts, D. Faccio, P. Di Trapani, and J. Moloney, “Generation of extended plasma channels in air using femtosecond Bessel beams,” Opt. Express 16(20), 15733–15740 (2008).
    [CrossRef] [PubMed]
  29. O. G. Kosareva, A. V. Grigorevskii, and V. P. Kandidov, “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse,” Quantum Electron. 35(11), 1013–1014 (2005).
    [CrossRef]
  30. S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282, 129–134 (2009).
  31. G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Opt. Lett. 29(15), 1772–1774 (2004).
    [CrossRef] [PubMed]
  32. Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
    [CrossRef]
  33. B. Alonso, I. J. Sola, J. S. Román, O. Varela, and L. Roso, “Spatiotemporal evolution of light during propagation in filamentation regime,” J. Opt. Soc. Am. B 28(8), 1807–1816 (2011).
    [CrossRef]
  34. F. Martin, R. Mawassi, F. Vidal, I. Gallimberti, D. Comtois, H. Pépin, J. C. Kieffer, and H. P. Mercure, “Spectroscopic study of ultrashort pulse laser-breakdown plasmas in air,” Appl. Spectrosc. 56(11), 1444–1452 (2002).
    [CrossRef]
  35. W. Liu, Q. Luo, and S. L. Chin, “Competition between multiphoton/tunnel ionization and filamentation induced by powerful femtosecond laser pulses in air,” Chin. Opt. Lett. 1, 56–58 (2003).
  36. A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001).
  37. X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
    [CrossRef] [PubMed]
  38. P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
    [CrossRef] [PubMed]
  39. P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of. multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
    [CrossRef]
  40. X. L. Liu, X. Lu, X. Liu, L. B. Feng, J. L. Ma, Y. T. Li, L. M. Chen, Q. L. Dong, W. M. Wang, Z. H. Wang, Z. Y. Wei, Z. M. Sheng, and J. Zhang, “Broadband supercontinuum generation in air using tightly focused femtosecond laser pulses,” Opt. Lett. 36(19), 3900–3902 (2011).
    [CrossRef] [PubMed]

2011 (3)

2010 (5)

X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
[CrossRef] [PubMed]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[CrossRef] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of. multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[CrossRef] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

2009 (3)

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103(12), 123902 (2009).
[CrossRef] [PubMed]

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[CrossRef]

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282, 129–134 (2009).

2008 (2)

2007 (4)

S. Akturk, C. D'Amico, M. Franco, A. Couairon, and A. Mysyrowicz, “Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon,” Phys. Rev. A 76(6), 063819 (2007).
[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmasinduced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

2006 (1)

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[CrossRef] [PubMed]

2005 (3)

W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13(15), 5750–5755 (2005).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

O. G. Kosareva, A. V. Grigorevskii, and V. P. Kandidov, “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse,” Quantum Electron. 35(11), 1013–1014 (2005).
[CrossRef]

2004 (2)

G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Opt. Lett. 29(15), 1772–1774 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

2003 (3)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

W. Liu, Q. Luo, and S. L. Chin, “Competition between multiphoton/tunnel ionization and filamentation induced by powerful femtosecond laser pulses in air,” Chin. Opt. Lett. 1, 56–58 (2003).

2002 (2)

F. Martin, R. Mawassi, F. Vidal, I. Gallimberti, D. Comtois, H. Pépin, J. C. Kieffer, and H. P. Mercure, “Spectroscopic study of ultrashort pulse laser-breakdown plasmas in air,” Appl. Spectrosc. 56(11), 1444–1452 (2002).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

2001 (3)

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett. 343(3-4), 345–350 (2001).
[CrossRef]

A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001).

2000 (1)

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).

1999 (3)

A. Talebpour, A. D. Bandrauk, J. Yang, and S. L. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313(5-6), 789–794 (1999).
[CrossRef]

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[CrossRef]

A. Talebpour, S. Petit, and S. L. Chin, “Re-focusing during the propagation of a focused femtosecond Ti:Sapphire laser pulse in air,” Opt. Commun. 171(4-6), 285–290 (1999).
[CrossRef]

1998 (1)

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasi-phase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

1995 (1)

1988 (1)

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A 37(3), 747–760 (1988).
[CrossRef] [PubMed]

1978 (1)

P. E. Gill and W. Murray, “Algorithms for the solution of the nonlinear least-squares problem,” SIAM J. Numer. Anal. 15(5), 977–992 (1978).
[CrossRef]

Abdel-Fattah, M.

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

Abdollahpour, D.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[CrossRef] [PubMed]

Agostini, P.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasi-phase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Akozbek, N.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001).

Aközbek, N.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

Akturk, S.

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282, 129–134 (2009).

S. Akturk, C. D'Amico, M. Franco, A. Couairon, and A. Mysyrowicz, “Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon,” Phys. Rev. A 76(6), 063819 (2007).
[CrossRef]

Alonso, B.

André, Y. B.

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

André, Y.-B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Arnold, C. L.

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[CrossRef] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of. multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

Azarm, A.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[CrossRef]

Bagchi, S.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of. multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[CrossRef] [PubMed]

Bandrauk, A. D.

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett. 343(3-4), 345–350 (2001).
[CrossRef]

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

A. Talebpour, A. D. Bandrauk, J. Yang, and S. L. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313(5-6), 789–794 (1999).
[CrossRef]

Becker, A.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett. 343(3-4), 345–350 (2001).
[CrossRef]

A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001).

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Bernhardt, J.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[CrossRef]

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Bowden, C. M.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001).

Braun, A.

Breger, P.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasi-phase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Campbell, E. M.

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A 37(3), 747–760 (1988).
[CrossRef] [PubMed]

Chen, L. M.

Cheng, Y.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Chin, S. L.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[CrossRef]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13(15), 5750–5755 (2005).
[CrossRef] [PubMed]

W. Liu, Q. Luo, and S. L. Chin, “Competition between multiphoton/tunnel ionization and filamentation induced by powerful femtosecond laser pulses in air,” Chin. Opt. Lett. 1, 56–58 (2003).

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett. 343(3-4), 345–350 (2001).
[CrossRef]

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001).

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).

A. Talebpour, A. D. Bandrauk, J. Yang, and S. L. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313(5-6), 789–794 (1999).
[CrossRef]

A. Talebpour, S. Petit, and S. L. Chin, “Re-focusing during the propagation of a focused femtosecond Ti:Sapphire laser pulse in air,” Opt. Commun. 171(4-6), 285–290 (1999).
[CrossRef]

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[CrossRef]

Chiron, A.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasi-phase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Chu, W.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Comtois, D.

Couairon, A.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of. multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[CrossRef] [PubMed]

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282, 129–134 (2009).

S. Akturk, C. D'Amico, M. Franco, A. Couairon, and A. Mysyrowicz, “Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon,” Phys. Rev. A 76(6), 063819 (2007).
[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

D’Amico, C.

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

D'Amico, C.

S. Akturk, C. D'Amico, M. Franco, A. Couairon, and A. Mysyrowicz, “Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon,” Phys. Rev. A 76(6), 063819 (2007).
[CrossRef]

Di Trapani, P.

Dong, Q. L.

Du, D.

Eisenmann, S.

Faccio, D.

Feng, L. B.

Fibich, G.

Franco, M.

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282, 129–134 (2009).

S. Akturk, C. D'Amico, M. Franco, A. Couairon, and A. Mysyrowicz, “Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon,” Phys. Rev. A 76(6), 063819 (2007).
[CrossRef]

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Fu, Y. X.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Gallimberti, I.

Gao, H.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Gill, P. E.

P. E. Gill and W. Murray, “Algorithms for the solution of the nonlinear least-squares problem,” SIAM J. Numer. Anal. 15(5), 977–992 (1978).
[CrossRef]

Golubtsov, I. S.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

Grigorevskii, A. V.

O. G. Kosareva, A. V. Grigorevskii, and V. P. Kandidov, “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse,” Quantum Electron. 35(11), 1013–1014 (2005).
[CrossRef]

Hao, Z. Q.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Henin, S.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Hosseini, S. A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

Ilan, B.

Kamali, Y.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[CrossRef]

Kandidov, V. P.

O. G. Kosareva, A. V. Grigorevskii, and V. P. Kandidov, “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse,” Quantum Electron. 35(11), 1013–1014 (2005).
[CrossRef]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

Kasparian, J.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

J. Kasparian and J. P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16(1), 466–493 (2008).
[CrossRef] [PubMed]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).

Kieffer, J. C.

Kiran, P. P.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of. multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[CrossRef] [PubMed]

Kolesik, M.

Korn, G.

Kosareva, O. G.

O. G. Kosareva, A. V. Grigorevskii, and V. P. Kandidov, “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse,” Quantum Electron. 35(11), 1013–1014 (2005).
[CrossRef]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

Kreß, M.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmasinduced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

Krishnan, S. R.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of. multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[CrossRef] [PubMed]

Kumar, G. R.

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
[CrossRef] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of. multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Landen, O. L.

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A 37(3), 747–760 (1988).
[CrossRef] [PubMed]

Lange, H. R.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasi-phase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Lascoux, N.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Li, Y. T.

Liu, F.

Liu, W.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13(15), 5750–5755 (2005).
[CrossRef] [PubMed]

W. Liu, Q. Luo, and S. L. Chin, “Competition between multiphoton/tunnel ionization and filamentation induced by powerful femtosecond laser pulses in air,” Chin. Opt. Lett. 1, 56–58 (2003).

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

Liu, X.

Liu, X. L.

Löffler, T.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmasinduced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

Lu, X.

Luo, Q.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

W. Liu, Q. Luo, and S. L. Chin, “Competition between multiphoton/tunnel ionization and filamentation induced by powerful femtosecond laser pulses in air,” Chin. Opt. Lett. 1, 56–58 (2003).

Ma, J. L.

Martin, F.

Mawassi, R.

Méchain, G.

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

Méjean, G.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Mercure, H. P.

Moloney, J.

Mourou, G.

Murray, W.

P. E. Gill and W. Murray, “Algorithms for the solution of the nonlinear least-squares problem,” SIAM J. Numer. Anal. 15(5), 977–992 (1978).
[CrossRef]

Mysyrowicz, A.

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282, 129–134 (2009).

S. Akturk, C. D'Amico, M. Franco, A. Couairon, and A. Mysyrowicz, “Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon,” Phys. Rev. A 76(6), 063819 (2007).
[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasi-phase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Nakaema, W. M.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Ni, J. L.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Oral, E.

A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001).

Papazoglou, D. G.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[CrossRef] [PubMed]

Pépin, H.

Perry, M. D.

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A 37(3), 747–760 (1988).
[CrossRef] [PubMed]

Petit, S.

A. Talebpour, S. Petit, and S. L. Chin, “Re-focusing during the propagation of a focused femtosecond Ti:Sapphire laser pulse in air,” Opt. Commun. 171(4-6), 285–290 (1999).
[CrossRef]

Petit, Y.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Polynkin, P.

Prade, B.

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Quießer, M

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Ripoche, J. F.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasi-phase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Roberts, A.

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Rohwetter, P.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Román, J. S.

Roskos, H. G.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmasinduced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

Roso, L.

Salam, R.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Salmon, E.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Sauerbrey, R.

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).

Schroeder, H.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

Sheng, Z. M.

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Sola, I. J.

Squier, J.

ste,

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Stelmaszczyk, K.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Suntsov, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[CrossRef] [PubMed]

Szöke, A.

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A 37(3), 747–760 (1988).
[CrossRef] [PubMed]

Talebpour, A.

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

A. Talebpour, S. Petit, and S. L. Chin, “Re-focusing during the propagation of a focused femtosecond Ti:Sapphire laser pulse in air,” Opt. Commun. 171(4-6), 285–290 (1999).
[CrossRef]

A. Talebpour, A. D. Bandrauk, J. Yang, and S. L. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313(5-6), 789–794 (1999).
[CrossRef]

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[CrossRef]

Théberge, F.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

Thomson, M. D.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmasinduced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

Tzortzakis, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Varela, O.

Vidal, F.

Vijayalakshmi, K.

A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001).

W, L.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Wang, W. M.

Wang, Z. H.

Wei, Z. Y.

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Wolf, J. P.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

J. Kasparian and J. P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16(1), 466–493 (2008).
[CrossRef] [PubMed]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Wöste, L.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Xi, T. T.

Xiong, H.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Xu, H.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Xu, H. L.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[CrossRef]

Xu, Z. Z.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Yang, J.

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[CrossRef]

A. Talebpour, A. D. Bandrauk, J. Yang, and S. L. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313(5-6), 789–794 (1999).
[CrossRef]

Yao, J. P.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Yu, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

Zeng, B.

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

Zhang, J.

Zhou, B.

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282, 129–134 (2009).

Zigler, A.

Appl. Phys. B (5)

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77(2-3), 149–165 (2003).
[CrossRef]

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).

G. Méchain, A. Couairon, Y. B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

Y. X. Fu, H. Gao, W. Chu, J. L. Ni, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B 103(2), 435–439 (2011).
[CrossRef]

A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001).

Appl. Spectrosc. (1)

Can. J. Phys. (1)

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

Chem. Phys. (1)

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[CrossRef]

Chem. Phys. Lett. (2)

A. Talebpour, A. D. Bandrauk, J. Yang, and S. L. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313(5-6), 789–794 (1999).
[CrossRef]

A. Becker, A. D. Bandrauk, and S. L. Chin, “S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule,” Chem. Phys. Lett. 343(3-4), 345–350 (2001).
[CrossRef]

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmasinduced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

Laser Phys. (1)

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

Nat. Photonics (1)

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Q. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M Quießer, and R. SalaméE. Salmon and L. Wö ste and J. P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[CrossRef]

Opt. Commun. (3)

A. Talebpour, S. Petit, and S. L. Chin, “Re-focusing during the propagation of a focused femtosecond Ti:Sapphire laser pulse in air,” Opt. Commun. 171(4-6), 285–290 (1999).
[CrossRef]

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[CrossRef]

S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun. 282, 129–134 (2009).

Opt. Express (5)

Opt. Lett. (3)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

Phys. Rev. A (3)

S. Akturk, C. D'Amico, M. Franco, A. Couairon, and A. Mysyrowicz, “Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon,” Phys. Rev. A 76(6), 063819 (2007).
[CrossRef]

M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, “Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser,” Phys. Rev. A 37(3), 747–760 (1988).
[CrossRef] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of. multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82(1), 013805 (2010).
[CrossRef]

Phys. Rev. Lett. (5)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[CrossRef] [PubMed]

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103(12), 123902 (2009).
[CrossRef] [PubMed]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006).
[CrossRef] [PubMed]

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasi-phase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Quantum Electron. (1)

O. G. Kosareva, A. V. Grigorevskii, and V. P. Kandidov, “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse,” Quantum Electron. 35(11), 1013–1014 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Science (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[CrossRef] [PubMed]

SIAM J. Numer. Anal. (1)

P. E. Gill and W. Murray, “Algorithms for the solution of the nonlinear least-squares problem,” SIAM J. Numer. Anal. 15(5), 977–992 (1978).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Fluorescence signal distribution of plasma column recorded by CCD camera. (b)Transverse fluorescence signal distribution at focus (indicated by the dashed line in (a)) retrieved from CCD image. (c) Typical nitrogen fluorescence spectra obtained when f=11cm, 0.21mJ(black); f=30cm, 0.21mJ(blue); f=30cm, 0.1mJ(red). The three spectra are all normalized to 337nm line.

Fig. 2
Fig. 2

Plasma column diameters (FWHM) as a function of the initial laser pulse energy for different focal length lenses.

Fig. 3
Fig. 3

Signal ratio of R391nm/337nm of nitrogen fluorescence as a function of input laser energy for different focal length lenses.

Fig. 4
Fig. 4

Signal ratio of R391nm/337nm of nitrogen fluorescence as a function of laser peak intensity for different focal length lenses, the fitting curve according to Eq. (7) is indicated as the black solid line. Red and blue dotted lines correspond to the upper and lower limit of the fitting, respectively.

Fig. 5
Fig. 5

Laser peak intensities deduced from Eq. (13) as a function of input laser energy.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S 391 N i excited =a I n1 S 337 N i total = N i excited + N i ground =a I n1 +b I n2
S 337 =k(a I n1 +b I n2 )
R S 391 S 337 = a I n1 k(a I n1 +b I n2 ) 1 1+(b/a) I n2n1
R 1 1+(b/a) I 0 n2n1 ( f (r,t) n2 rdrdt/ f (r,t) n1 rdrdt)
f (r,t) n2 rdrdt f (r,t) n1 rdrdt = ( n1 n2 ) 3/2 =constant.
R 1 1+( b/a ) ( n1/n2 ) 3/2 I 0 n2n1
I 0 =β ( α R 1) m
τ= τ 0 1+ ( 4ln2 z k 2 τ 0 2 ) 2
Ne(r)=σ I n (r)
I(r)= I 0 e r 2 / w 2
Ne(r)=σ I 0 n e n r 2 / w 2 =σ I 0 n e r 2 / (w/ n ) 2 .
I 0 =4ln2 E τπ d laser 2
I 0 =79× ( 2.6 R -1 ) 0.34 × 10 12 W/ c m 2 .

Metrics