Abstract

Optically resonant devices are promising as label-free biomolecular sensors due to their ability to concentrate electromagnetic energy into small mode volumes and their capacity for multiplexed detection. A fundamental limitation of current optical biosensor technology is that the biomolecular interactions are limited to the surface of the resonant device, while the highest intensity of electromagnetic energy is trapped within the core. In this paper, we present nanoporous polymer optofluidic devices consisting of ring resonators coupled to bus waveguides. We report a 40% increase in polymer device sensitivity attributed to the addition of core energy- bioanalyte interactions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Cooper, “Label-free screening of bio-molecular interactions,” Anal. Bioanal. Chem. 377(5), 834–842 (2003).
    [CrossRef] [PubMed]
  2. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4(1-2), 33–52 (2008).
    [CrossRef] [PubMed]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  4. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [CrossRef] [PubMed]
  5. S. Mandal and D. Erickson, “Nanoscale Optofluidic Sensor Arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  6. J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: Opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
    [CrossRef] [PubMed]
  7. K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
    [CrossRef] [PubMed]
  8. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [CrossRef]
  9. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
    [CrossRef]
  10. B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, “Design of ring resonators using electro-optic polymer waveguides,” J. Phys. Chem. C 112(21), 7953–7958 (2008).
    [CrossRef]
  11. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
    [CrossRef] [PubMed]
  12. C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
    [CrossRef]
  13. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
    [CrossRef]
  14. S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
    [CrossRef] [PubMed]
  15. A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett. 29(6), 533–535 (2004).
    [CrossRef] [PubMed]
  16. F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
    [CrossRef] [PubMed]
  17. K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24(8), 2528–2533 (2009).
    [CrossRef] [PubMed]
  18. C. A. Barrios, “Optical Slot-Waveguide Based Biochemical Sensors,” Sensors (Basel Switzerland) 9(6), 4751–4765 (2009).
    [CrossRef]
  19. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
    [CrossRef] [PubMed]
  20. D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A bio-fluidic-photonic platform based on deep UV modification of polymers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 214–222 (2007).
    [CrossRef]
  21. N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
    [CrossRef]
  22. F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
    [CrossRef] [PubMed]
  23. J. M. Goddard and J. H. Hotchkiss, “Polymer surface modification for the attachment of bioactive compounds,” Prog. Polym. Sci. 32(7), 698–725 (2007).
    [CrossRef]
  24. Y. Li, J. Q. Pham, K. P. Johnston, and P. F. Green, “Contact Angle of Water on Polystyrene Thin Films: Effects of CO(2) Environment and Film Thickness,” Langmuir 23(19), 9785–9793 (2007).
    [CrossRef] [PubMed]
  25. S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
    [CrossRef]

2009

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

C. A. Barrios, “Optical Slot-Waveguide Based Biochemical Sensors,” Sensors (Basel Switzerland) 9(6), 4751–4765 (2009).
[CrossRef]

2008

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[CrossRef] [PubMed]

B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, “Design of ring resonators using electro-optic polymer waveguides,” J. Phys. Chem. C 112(21), 7953–7958 (2008).
[CrossRef]

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale Optofluidic Sensor Arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

2007

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

J. M. Goddard and J. H. Hotchkiss, “Polymer surface modification for the attachment of bioactive compounds,” Prog. Polym. Sci. 32(7), 698–725 (2007).
[CrossRef]

Y. Li, J. Q. Pham, K. P. Johnston, and P. F. Green, “Contact Angle of Water on Polystyrene Thin Films: Effects of CO(2) Environment and Film Thickness,” Langmuir 23(19), 9785–9793 (2007).
[CrossRef] [PubMed]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
[CrossRef] [PubMed]

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: Opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A bio-fluidic-photonic platform based on deep UV modification of polymers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 214–222 (2007).
[CrossRef]

2006

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

2004

A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett. 29(6), 533–535 (2004).
[CrossRef] [PubMed]

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

2003

M. A. Cooper, “Label-free screening of bio-molecular interactions,” Anal. Bioanal. Chem. 377(5), 834–842 (2003).
[CrossRef] [PubMed]

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

2002

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
[CrossRef]

2000

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

Ahrens, G.

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Armani, D. K.

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Baets, R.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

Barrios, C. A.

Bienstman, P.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

Bruendel, M.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A bio-fluidic-photonic platform based on deep UV modification of polymers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 214–222 (2007).
[CrossRef]

Casquel, R.

Chao, C. Y.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
[CrossRef]

Cheben, P.

Coates, G. W.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Cooper, M. A.

M. A. Cooper, “Label-free screening of bio-molecular interactions,” Anal. Bioanal. Chem. 377(5), 834–842 (2003).
[CrossRef] [PubMed]

Cordovez, B.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Daniels, J. S.

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: Opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

Datta, P.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

De Vos, K.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

Delâge, A.

Densmore, A.

Dinu, R.

B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, “Design of ring resonators using electro-optic polymer waveguides,” J. Phys. Chem. C 112(21), 7953–7958 (2008).
[CrossRef]

Erickson, D.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale Optofluidic Sensor Arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Fetterman, H.

B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, “Design of ring resonators using electro-optic polymer waveguides,” J. Phys. Chem. C 112(21), 7953–7958 (2008).
[CrossRef]

Fetters, L. J.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Fung, W.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

Girones, J.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

Goddard, J. M.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

J. M. Goddard and J. H. Hotchkiss, “Polymer surface modification for the attachment of bioactive compounds,” Prog. Polym. Sci. 32(7), 698–725 (2007).
[CrossRef]

Goettert, J.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

Goldschmidt, A.

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Green, P. F.

Y. Li, J. Q. Pham, K. P. Johnston, and P. F. Green, “Contact Angle of Water on Polystyrene Thin Films: Effects of CO(2) Environment and Film Thickness,” Langmuir 23(19), 9785–9793 (2007).
[CrossRef] [PubMed]

Griol, A.

Gruetzner, G.

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Gruner, S. M.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Guo, L. J.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
[CrossRef]

Gurung, S.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

Gutmann, J. S.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Gylfason, K. B.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hashimoto, M.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

Holgado, M.

Hotchkiss, J. H.

J. M. Goddard and J. H. Hotchkiss, “Polymer surface modification for the attachment of bioactive compounds,” Prog. Polym. Sci. 32(7), 698–725 (2007).
[CrossRef]

Ichihashi, Y.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A bio-fluidic-photonic platform based on deep UV modification of polymers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 214–222 (2007).
[CrossRef]

Isaacson, M.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A bio-fluidic-photonic platform based on deep UV modification of polymers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 214–222 (2007).
[CrossRef]

Jain, A.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Janz, S.

Jin, D.

B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, “Design of ring resonators using electro-optic polymer waveguides,” J. Phys. Chem. C 112(21), 7953–7958 (2008).
[CrossRef]

Johnston, K. P.

Y. Li, J. Q. Pham, K. P. Johnston, and P. F. Green, “Contact Angle of Water on Polystyrene Thin Films: Effects of CO(2) Environment and Film Thickness,” Langmuir 23(19), 9785–9793 (2007).
[CrossRef] [PubMed]

Kehagias, N.

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Kian, R.

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Kim, S.

B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, “Design of ring resonators using electro-optic polymer waveguides,” J. Phys. Chem. C 112(21), 7953–7958 (2008).
[CrossRef]

Länge, K.

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[CrossRef] [PubMed]

Lapointe, J.

Lee, L. P.

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[CrossRef] [PubMed]

Li, Y.

Y. Li, J. Q. Pham, K. P. Johnston, and P. F. Green, “Contact Angle of Water on Polystyrene Thin Films: Effects of CO(2) Environment and Film Thickness,” Langmuir 23(19), 9785–9793 (2007).
[CrossRef] [PubMed]

Lopinski, G.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Mahajan, S.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Mandal, S.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale Optofluidic Sensor Arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Martin, A. L.

McCarley, R. L.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

McKinnon, R.

Mischki, T.

Myers, F. B.

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[CrossRef] [PubMed]

Pfeiffer, K.

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Pham, J. Q.

Y. Li, J. Q. Pham, K. P. Johnston, and P. F. Green, “Contact Angle of Water on Polystyrene Thin Films: Effects of CO(2) Environment and Film Thickness,” Langmuir 23(19), 9785–9793 (2007).
[CrossRef] [PubMed]

Popelka, S.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

Post, E.

Pourmand, N.

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: Opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

Rabus, D. G.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A bio-fluidic-photonic platform based on deep UV modification of polymers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 214–222 (2007).
[CrossRef]

Rapp, B. E.

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[CrossRef] [PubMed]

Rapp, M.

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[CrossRef] [PubMed]

Renker, S.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Sánchez, B.

Schacht, E.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

Schmid, J. H.

Seger, R. A.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A bio-fluidic-photonic platform based on deep UV modification of polymers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 214–222 (2007).
[CrossRef]

Seo, B. J.

B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, “Design of ring resonators using electro-optic polymer waveguides,” J. Phys. Chem. C 112(21), 7953–7958 (2008).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Simon, P. F. W.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Sohlström, H.

Soper, S. A.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

Steier, W.

B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, “Design of ring resonators using electro-optic polymer waveguides,” J. Phys. Chem. C 112(21), 7953–7958 (2008).
[CrossRef]

Torres, C. M. Sotomayor

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Vahala, K. J.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Waldron, P.

Wang, H.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

Wei, S.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

Welle, A.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A bio-fluidic-photonic platform based on deep UV modification of polymers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 214–222 (2007).
[CrossRef]

Wiesner, U.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Xu, D. X.

Xu, F.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

Yang, A. H. J.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Yang, L.

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

Zankovych, S.

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Zelsmann, M.

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

M. A. Cooper, “Label-free screening of bio-molecular interactions,” Anal. Bioanal. Chem. 377(5), 834–842 (2003).
[CrossRef] [PubMed]

K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal. Bioanal. Chem. 391(5), 1509–1519 (2008).
[CrossRef] [PubMed]

Anal. Chem.

F. Xu, P. Datta, H. Wang, S. Gurung, M. Hashimoto, S. Wei, J. Goettert, R. L. McCarley, and S. A. Soper, “Polymer microfluidic chips with integrated waveguides for reading microarrays,” Anal. Chem. 79(23), 9007–9013 (2007).
[CrossRef] [PubMed]

Biosens. Bioelectron.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

Electroanalysis

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: Opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

Electron. Lett.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A bio-fluidic-photonic platform based on deep UV modification of polymers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 214–222 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

J. Phys. Chem. C

B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, “Design of ring resonators using electro-optic polymer waveguides,” J. Phys. Chem. C 112(21), 7953–7958 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
[CrossRef]

Lab Chip

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[CrossRef] [PubMed]

Langmuir

Y. Li, J. Q. Pham, K. P. Johnston, and P. F. Green, “Contact Angle of Water on Polystyrene Thin Films: Effects of CO(2) Environment and Film Thickness,” Langmuir 23(19), 9785–9793 (2007).
[CrossRef] [PubMed]

Macromol. Chem. Phys.

S. Mahajan, S. Renker, P. F. W. Simon, J. S. Gutmann, A. Jain, S. M. Gruner, L. J. Fetters, G. W. Coates, and U. Wiesner, “Synthesis and characterization of amphiphilic poly(ethylene oxide)-block-poly(hexyl methacrylate) copolymers,” Macromol. Chem. Phys. 204(8), 1047–1055 (2003).
[CrossRef]

Microfluid. Nanofluid.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Nat. Methods

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Prog. Polym. Sci.

J. M. Goddard and J. H. Hotchkiss, “Polymer surface modification for the attachment of bioactive compounds,” Prog. Polym. Sci. 32(7), 698–725 (2007).
[CrossRef]

Sensors (Basel Switzerland)

C. A. Barrios, “Optical Slot-Waveguide Based Biochemical Sensors,” Sensors (Basel Switzerland) 9(6), 4751–4765 (2009).
[CrossRef]

Superlattices Microstruct.

N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, and G. Gruetzner, “Embedded polymer waveguides: design and fabrication approaches,” Superlattices Microstruct. 36(1-3), 201–210 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Traditional on chip optical biosensors rely on biomolecules interacting with a traveling waves evanescent field instead of the much higher core energy. (b) When biomolecules are present, the optical path length increases and the resonance of a ring resonator red shifts. (c) Here we demonstrate polymer devices where biomolecules more strongly interact with the core electromagnetic energy by directly entering pores in the resonator. Because of increased interaction with the electromagnetic energy, the resonance peak shifts further (Δn2 > Δn1).

Fig. 2
Fig. 2

(a) An illustration of porous waveguides and a ring resonator show the underlying device structure. A ring resonator was chosen in order to increase sensitivity by further localizing light to a porous location. (b) A scanning electron micrograph (SEM) of two adjacent porous waveguides highlights how interactions can occur both around and in the waveguide core.

Fig. 3
Fig. 3

A two step lithographic process was employed to create nanoporous waveguides. (a) First, an embossing master was created out of silicon oxide using standard photolithographic techniques and fluorine based etching. (b) Second, a custom polymer resist was spun onto a silicon oxide on silicon wafer, imprinted using the embossing master, and then developed using a select solvent.

Fig. 5
Fig. 5

(a) A scanning electron micrograph shows the complete ring resonator and its relative dimensions. (b) The end facets generated by our cleave and snap technique show how precisely the waveguides can be fractured.(c) An SEM illustrates the smallest feature size on our devices and show how the ring and bus waveguide smoothly come to within a few hundred nanometers of each other. Further, pores developed with DMSO are also shown here.

Fig. 4
Fig. 4

(a) An illustration of the experimental setup is shown. Polarized laser light is sent through a lensed fiber and coupled into the waveguide. The waveguide is offset by 3mm to prohibit scattered light from reaching the detector and outcoming light is refocused through an objective lens, put through a polarization filter, and then reaches a photodetector. (b) Optical and microfluidic devices are shown aligned and sandwiched between two Plexiglas device holders. The final assembly is screwed closed forming a tight seal around our microfluidic channels. Illustrations show the concentration of the light (c) and fluid (d) are localized to one small area over the resonator. (e) Shows a ring resonator imaged through the device and covered in aqueous solution.

Fig. 6
Fig. 6

(a.) A scanning electron micrograph shows a ring resonator made porous using oxygen plasma. (b) An end facet which was freeze fractured shows pores running throughout the waveguide structure. (c) A racetrack resonator and waveguide are shown separated by approximately 300 nm, the smallest top down fabricated feature on the device.

Fig. 7
Fig. 7

A typical output spectrum of a porous resonator is shown. The free spectral range of the devices is approximately 2.8 nm, the quality factors range from 1000 to 3000, and on resonance wavelengths have extinctions between 3 and 15 dB.

Fig. 8
Fig. 8

As the porosity of a ring resonator increases its resonance blue shifts. This change corresponds with decreasing mass and a shorter optical path and is a good indicator that pores are being generated. Measurements of resonance were taken with the resonator immersed in water at all four timepoints, and conditions were controlled so the only change was the addition of pores.

Fig. 9
Fig. 9

The resonance shift of nonporous (a) polymer resonators is compared to their (b) porous counterparts. Measurements are taken at five different concentrations of glucose between 0 and 20 percent. As the refractive index of the cladding solution increases, a corresponding red shift is seen in the resonance condition of the rings. Because of increased bioanalyte electromagnetic energy interactions occurring in the porous waveguide the sensitivity of the device is significantly increased, and further shifts can be observed in (b) than (a). SEMs of a waveguide without pores (c) and of the waveguide after pores (d) are added are also shown.

Fig. 10
Fig. 10

The sensitivity of a porous resonator is plotted against that of a nonporous resonator. An increase in over 40% sensitivity can be seen. The first data point appears at 0 corresponding to the resonator immersed in water.

Metrics