Abstract

We present a reach-extender for the upstream transmission path of 10Gb/s passive optical networks based on an optimised cascade of two semiconductor optical amplifiers (SOAs). Through careful optimisation of the bias current of the second stage SOA, over 19dB input dynamic range and up to 12dB compression of the output dynamic range were achieved without any dynamic control. A reach of 70km and split up to 32 were demonstrated experimentally using an ac-coupled, continuous-mode receiver with a reduced 56ns ac-coupling constant.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for Future Optical Access Networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
    [CrossRef]
  2. D. Nesset, D. Payne, R. Davey, and T. Gilfedder, “Demonstration of enhanced reach and split of a GPON system using semiconductor optical amplifier,” in European Conference on Optical Communication (ECOC 2006), paper Mo4.5.1, Cannes, France.
  3. S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10Gbit/s EPONs,” IEEE Photon. Technol. Lett. 20(24), 2078–2080 (2008).
    [CrossRef]
  4. B. Cao and J. E. Mitchell, “Modelling Optical Burst Equalisation in Next Generation Access Networks,” in Proceedings of International Conference on Transparent Optical Networks (ICTON 2010), paper Th.A2.3, Munich, Germany.
  5. C. Antony, G. Talli, and P. D. Townsend, “SOA Based Upstream Packet Equalizer in 10Gb/s Extended-Reach PONs,” in Proceedings of Optical Fiber Communication Conference (OFC 2009), paper OThA5, San Diego, USA.
  6. IEEE Standard, 802.3 av (2009).
  7. K. Inoue, “Waveform distortion in a gain-saturated semiconductor optical amplifier for NRZ and Manchester formats,” IEE Proc., Optoelectron. 144(6), 433–437 (1997).
    [CrossRef]
  8. A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “Bit Patterning in SOAs: Statistical Characterization through Multicanonical Monte Carlo Simulations,” IEEE J. Quantum Electron. 46(4), 570–578 (2010).
    [CrossRef]
  9. R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, “Fiber-Optic Communication Systems,” 3rd ed. (John Wiley & Sons, Inc, 1997).
  11. H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998).
    [CrossRef]
  12. E. Rotem and D. Sadot, “Performance analysis of AC-coupled burst-mode receiver for fiber-optic burst switching networks,” IEEE Trans. Commun. 53(5), 899–904 (2005).
    [CrossRef]
  13. Maxim Inc, “NRZ bandwidth – LF cutoff and baseline wander, ” Appl. Note HFAN-09.0.4, available online http://pdfserv.maxim-ic.com/en/an/AN1738.pdf

2010 (1)

A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “Bit Patterning in SOAs: Statistical Characterization through Multicanonical Monte Carlo Simulations,” IEEE J. Quantum Electron. 46(4), 570–578 (2010).
[CrossRef]

2008 (1)

S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10Gbit/s EPONs,” IEEE Photon. Technol. Lett. 20(24), 2078–2080 (2008).
[CrossRef]

2006 (1)

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for Future Optical Access Networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

2005 (1)

E. Rotem and D. Sadot, “Performance analysis of AC-coupled burst-mode receiver for fiber-optic burst switching networks,” IEEE Trans. Commun. 53(5), 899–904 (2005).
[CrossRef]

1998 (1)

H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998).
[CrossRef]

1997 (1)

K. Inoue, “Waveform distortion in a gain-saturated semiconductor optical amplifier for NRZ and Manchester formats,” IEE Proc., Optoelectron. 144(6), 433–437 (1997).
[CrossRef]

1994 (1)

André, P.

S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10Gbit/s EPONs,” IEEE Photon. Technol. Lett. 20(24), 2078–2080 (2008).
[CrossRef]

Bononi, A.

A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “Bit Patterning in SOAs: Statistical Characterization through Multicanonical Monte Carlo Simulations,” IEEE J. Quantum Electron. 46(4), 570–578 (2010).
[CrossRef]

Bourgart, F.

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for Future Optical Access Networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

Davey, R.

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for Future Optical Access Networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

Davies, D. A. O.

Fonseca, D.

S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10Gbit/s EPONs,” IEEE Photon. Technol. Lett. 20(24), 2078–2080 (2008).
[CrossRef]

Ghazisaeidi, A.

A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “Bit Patterning in SOAs: Statistical Characterization through Multicanonical Monte Carlo Simulations,” IEEE J. Quantum Electron. 46(4), 570–578 (2010).
[CrossRef]

Haus, H. A.

H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998).
[CrossRef]

Inoue, K.

K. Inoue, “Waveform distortion in a gain-saturated semiconductor optical amplifier for NRZ and Manchester formats,” IEE Proc., Optoelectron. 144(6), 433–437 (1997).
[CrossRef]

Kani, J.

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for Future Optical Access Networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

Manning, R. J.

McCammon, K.

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for Future Optical Access Networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

Meleiro, R.

S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10Gbit/s EPONs,” IEEE Photon. Technol. Lett. 20(24), 2078–2080 (2008).
[CrossRef]

Monteiro, P.

S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10Gbit/s EPONs,” IEEE Photon. Technol. Lett. 20(24), 2078–2080 (2008).
[CrossRef]

Pato, S.

S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10Gbit/s EPONs,” IEEE Photon. Technol. Lett. 20(24), 2078–2080 (2008).
[CrossRef]

Rotem, E.

E. Rotem and D. Sadot, “Performance analysis of AC-coupled burst-mode receiver for fiber-optic burst switching networks,” IEEE Trans. Commun. 53(5), 899–904 (2005).
[CrossRef]

Rusch, L. A.

A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “Bit Patterning in SOAs: Statistical Characterization through Multicanonical Monte Carlo Simulations,” IEEE J. Quantum Electron. 46(4), 570–578 (2010).
[CrossRef]

Sadot, D.

E. Rotem and D. Sadot, “Performance analysis of AC-coupled burst-mode receiver for fiber-optic burst switching networks,” IEEE Trans. Commun. 53(5), 899–904 (2005).
[CrossRef]

Silva, H.

S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10Gbit/s EPONs,” IEEE Photon. Technol. Lett. 20(24), 2078–2080 (2008).
[CrossRef]

Vacondio, F.

A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “Bit Patterning in SOAs: Statistical Characterization through Multicanonical Monte Carlo Simulations,” IEEE J. Quantum Electron. 46(4), 570–578 (2010).
[CrossRef]

IEE Proc., Optoelectron. (1)

K. Inoue, “Waveform distortion in a gain-saturated semiconductor optical amplifier for NRZ and Manchester formats,” IEE Proc., Optoelectron. 144(6), 433–437 (1997).
[CrossRef]

IEEE Commun. Mag. (1)

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for Future Optical Access Networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “Bit Patterning in SOAs: Statistical Characterization through Multicanonical Monte Carlo Simulations,” IEEE J. Quantum Electron. 46(4), 570–578 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 10Gbit/s EPONs,” IEEE Photon. Technol. Lett. 20(24), 2078–2080 (2008).
[CrossRef]

H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998).
[CrossRef]

IEEE Trans. Commun. (1)

E. Rotem and D. Sadot, “Performance analysis of AC-coupled burst-mode receiver for fiber-optic burst switching networks,” IEEE Trans. Commun. 53(5), 899–904 (2005).
[CrossRef]

Opt. Lett. (1)

Other (6)

G. P. Agrawal, “Fiber-Optic Communication Systems,” 3rd ed. (John Wiley & Sons, Inc, 1997).

B. Cao and J. E. Mitchell, “Modelling Optical Burst Equalisation in Next Generation Access Networks,” in Proceedings of International Conference on Transparent Optical Networks (ICTON 2010), paper Th.A2.3, Munich, Germany.

C. Antony, G. Talli, and P. D. Townsend, “SOA Based Upstream Packet Equalizer in 10Gb/s Extended-Reach PONs,” in Proceedings of Optical Fiber Communication Conference (OFC 2009), paper OThA5, San Diego, USA.

IEEE Standard, 802.3 av (2009).

Maxim Inc, “NRZ bandwidth – LF cutoff and baseline wander, ” Appl. Note HFAN-09.0.4, available online http://pdfserv.maxim-ic.com/en/an/AN1738.pdf

D. Nesset, D. Payne, R. Davey, and T. Gilfedder, “Demonstration of enhanced reach and split of a GPON system using semiconductor optical amplifier,” in European Conference on Optical Communication (ECOC 2006), paper Mo4.5.1, Cannes, France.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup (DML = Directly Modulated Laser, PG = Pattern Generator, PC = Polarisation Controller, VOA = Variable Optical Attenuator, RX = Receiver, CR = Clock Recovery, LA = Limiting Amplifier, ED = Error Detector, DR = Dynamic Range).

Fig. 2
Fig. 2

(a): Soft packet eye diagrams at the reach-extender output (back-to-back), (b): gain of the 2nd stage SOA vs. input power (solid line) and Pinsat for different bias currents (dots), (c): input saturation power of the 2nd stage SOA vs. bias current.

Fig. 3
Fig. 3

Reach-extender characteristics in B2B, (a): dynamic range and output power for soft packets (SP) and loud packets (LP), (b): soft packets and loud packets power penalties.

Fig. 4
Fig. 4

(a): Pattern structure, (b): BER vs. reach-extender input power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G= G 0 exp [ ( G1 )( P in / P sat ) ] ,
P in sat = 2ln( 2 ) [ G 0 ( I bias )2 ] P sat ( I bias ) ,
N F tot =N F 1 + ( N F 2 1 ) / G 1 N F 1 ,
t RX =τln ( 1+ER 1ER ( β1 ) α R α R 1 ) ,
α P =exp [ CB D AV ( T b /τ ) ] ,

Metrics