Abstract

We study, fabricate and characterise an all-solid polymer composite waveguide consisting of a multicore fibre for single-mode operation down to the visible. The individual cores of the multicore structure that forms the composite core are arranged such that they strongly interact. The behaviour and parameters of the multicore geometry are analysed to achieve true single-mode operation. The composite core fibre is fabricated with off-the-shelf poly-methyl-methacrylate (PMMA) and Zeonex 480R polymers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in the strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Tech. 20 (2009).
  2. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
    [CrossRef]
  3. M. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 8(10), 3144–3154 (2007).
    [CrossRef]
  4. S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fibre polymer optical fibre sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
    [CrossRef]
  5. M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibres compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
    [CrossRef]
  6. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook (Springer, Berlin 2008).
  7. L. L. Blyer, T. Salmon, W. White, M. Dueser, W. A. Reed, Ch. S. Coappen, Ch. Ronaghan, P. Wiltzius, and X. Quan, “Performance and reliability of graded-index polymer optical fibres,” in Proceedings of the 47th (International Wire and Cable Symposium, Inc., 1998), pp. 241–245.
  8. D. Bosc and C. Toinen, “Fully polymer single-mode optical fibre,” IEEE Photon. Technol. Lett. 4(7), 749–750 (1992).
    [CrossRef]
  9. D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, M. G. Kuzyk, J. Sounick, and C. W. Dirk, “Single-mode nonlinear-optical polymer fibres,” J. Opt. Soc. Am. B 13(9), 2017 (1996).
    [CrossRef]
  10. M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).
  11. A. Argyros, “Microstructured polymer optical fibres,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
    [CrossRef]
  12. G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).
    [CrossRef]
  13. M. M. Vogel, M. Abdou-Ahmed, A. Voss, and T. Graf, “Very-large-mode-area, single-mode multicore fiber,” Opt. Lett. 34(18), 2876–2878 (2009).
    [CrossRef] [PubMed]
  14. J. M. Fini, “Large-mode-area multicore fibers in the single-moded regime,” Opt. Express 19(5), 4042–4046 (2011).
    [CrossRef] [PubMed]
  15. Y. Huo, P. Cheo, and G. King, “Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier,” Opt. Express 12(25), 6230–6239 (2004).
    [CrossRef] [PubMed]
  16. L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Shepherd, J. Broeng, H. R. Simonsen, and A. Petersson, “Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area,” Opt. Lett. 30(13), 1668–1670 (2005).
    [CrossRef] [PubMed]
  17. E. J. Bochove, P. K. Cheo, and G. G. King, “Self-organization in a multicore fiber laser array,” Opt. Lett. 28(14), 1200–1202 (2003).
    [CrossRef] [PubMed]
  18. R. J. Black, J. Lapierre, and J. Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J. 134(2), 105 (1987).
    [CrossRef]

2011 (1)

2010 (2)

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibres compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[CrossRef]

G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).
[CrossRef]

2009 (3)

2008 (1)

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fibre polymer optical fibre sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

2007 (1)

M. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 8(10), 3144–3154 (2007).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

1999 (1)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

1996 (1)

1992 (1)

D. Bosc and C. Toinen, “Fully polymer single-mode optical fibre,” IEEE Photon. Technol. Lett. 4(7), 749–750 (1992).
[CrossRef]

1987 (1)

R. J. Black, J. Lapierre, and J. Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J. 134(2), 105 (1987).
[CrossRef]

Abdou-Ahmed, M.

Argyros, A.

Bennett, C. R.

Black, R. J.

R. J. Black, J. Lapierre, and J. Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J. 134(2), 105 (1987).
[CrossRef]

Blacket, D.

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibres compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[CrossRef]

Bochove, E. J.

Bosc, D.

D. Bosc and C. Toinen, “Fully polymer single-mode optical fibre,” IEEE Photon. Technol. Lett. 4(7), 749–750 (1992).
[CrossRef]

Broeng, J.

Bunge, C.-A.

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibres compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[CrossRef]

Bures, J.

R. J. Black, J. Lapierre, and J. Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J. 134(2), 105 (1987).
[CrossRef]

Cheo, P.

Cheo, P. K.

Chu, P. L.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Dayton, M.

Dirk, C. W.

Fini, J. M.

Garvey, D. W.

Graf, T.

Hassan, T.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fibre polymer optical fibre sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

M. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 8(10), 3144–3154 (2007).
[CrossRef]

Huo, Y.

Kiesel, M.

M. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 8(10), 3144–3154 (2007).
[CrossRef]

Kiesel, S.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fibre polymer optical fibre sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

King, G.

King, G. G.

Kowalsky, M.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fibre polymer optical fibre sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

M. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 8(10), 3144–3154 (2007).
[CrossRef]

Kuzyk, M. G.

Lapierre, J.

R. J. Black, J. Lapierre, and J. Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J. 134(2), 105 (1987).
[CrossRef]

Large, M. C. J.

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibres compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[CrossRef]

M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in the strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Tech. 20 (2009).

Lobel, M.

Lu, C.

G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).
[CrossRef]

Michaille, L.

Moran, J.

M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in the strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Tech. 20 (2009).

Peng, G. D.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Peters, K.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fibre polymer optical fibre sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

M. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 8(10), 3144–3154 (2007).
[CrossRef]

Petersson, A.

Pun, C. F. J.

G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).
[CrossRef]

Shepherd, T. J.

Simonsen, H. R.

Sounick, J.

Tam, H.

G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).
[CrossRef]

Taylor, D. M.

Toinen, C.

D. Bosc and C. Toinen, “Fully polymer single-mode optical fibre,” IEEE Photon. Technol. Lett. 4(7), 749–750 (1992).
[CrossRef]

Tostenrude, J.

Townsend, J. S.

Vogel, M. M.

Voss, A.

Wai, P. K. A.

G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).
[CrossRef]

Wittorf, R.

Wong, A. C. L.

G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).
[CrossRef]

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Ye, L.

M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in the strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Tech. 20 (2009).

Young, P.

Zhou, G.

G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).
[CrossRef]

Zhou, Z.

Zimmerman, K.

IEE Proc. Pt. J. (1)

R. J. Black, J. Lapierre, and J. Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J. 134(2), 105 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).
[CrossRef]

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fibre polymer optical fibre sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

D. Bosc and C. Toinen, “Fully polymer single-mode optical fibre,” IEEE Photon. Technol. Lett. 4(7), 749–750 (1992).
[CrossRef]

IEEE Sens. J. (1)

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibres compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

M. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 8(10), 3144–3154 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (4)

M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in the strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Tech. 20 (2009).

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook (Springer, Berlin 2008).

L. L. Blyer, T. Salmon, W. White, M. Dueser, W. A. Reed, Ch. S. Coappen, Ch. Ronaghan, P. Wiltzius, and X. Quan, “Performance and reliability of graded-index polymer optical fibres,” in Proceedings of the 47th (International Wire and Cable Symposium, Inc., 1998), pp. 241–245.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(left) Dispersion plots for the fundamental mode (LP01) of the composite cores with different d/Λ ratios while fixing multicores size constant. (right) Schematic of the studied multicore composite cores and calculated LP01 modes at 810 nm for the different d/Λ ratios, at the same scale.

Fig. 2
Fig. 2

(left) Dispersion plot for the fundamental modes (LP01) of the composite cores with different d/Λ ratios while keeping core to core spacing constant. (right) Schematic of the studied multicore composite cores and calculated LP01 and LP11 modes at 810nm for the different d/Λ ratios, at the same scale.

Fig. 3
Fig. 3

(left) Modal effective indices of the LP01 and LP11 modes versus composite core filling fractions for 650, 810 and 1050nm wavelengths. (right) Mode profiles for LP01 and LP11 at 650, 810, 1050nm wavelengths at the same scale for the d/Λ = 0.4 composite core.

Fig. 4
Fig. 4

(a) Neck-down preform showing the 19 480µm Zeonex rods inserted into the PMMA cladding structure for the composite core fabrication. (b) First stage 6mm preform showing the Zeonex/PMMA multicore array. (c) 330µm diameter composite multicore polymer fibre with bottom light core illumination. (d) Optical photograph at high magnification of the 4.5µm composite core showing the 19 submicron Zeonex cores.

Fig. 5
Fig. 5

Optical photographs of (a) 4.5µm composite core of the 330µm fibre; (b) 330µm fibre near- and far-field images of the guided LP11 mode at 550nm in a 1.2m fibre length; (c) calculated LP01 mode profile for the 330µm fibre at 650nm; (d) 330µm fibre near- and far-field images of the guided fundamental mode LP01 at 650nm in a 1.2m fibre length; (e) 5.3µm composite core of the 390µm fibre; and (f) 390µm fibre near- and far-field images of the guided LP11 mode at 650nm in a 1.2m fibre length.

Metrics