Abstract

We apply a four-wave mixing analysis on a quantum dot laser to simultaneously obtain the linewidth enhancement factor α and other intrinsic laser parameters. By fitting the experimentally obtained regenerative signals and power spectra at different detuning frequencies with the respective curves analytically calculated from the rate equations, parameters including the linewidth enhancement factor, the carrier decay rate in the dots, the differential gain, and the photon decay rate can be determined all at once under the same operating conditions. In this paper, a theoretical model for the four-wave mixing analysis of the QD lasers is derived and verified. The sensitivity and accuracy of the parameter extraction using the four-wave mixing method are presented. Moreover, how each each parameters alter the shapes of the regenerative signals and the power spectra are also discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
    [CrossRef]
  2. D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
    [CrossRef]
  3. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
    [CrossRef]
  4. Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010).
    [CrossRef] [PubMed]
  5. Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009).
    [CrossRef] [PubMed]
  6. S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
    [CrossRef]
  7. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
    [CrossRef]
  8. S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
    [CrossRef]
  9. J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
    [CrossRef]
  10. T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
    [CrossRef]
  11. K. Iiyama, K. Hayashi, and Y. Ida, “Simple method for measuring the linewidth enhancement factor of semiconductor lasers by optical injection locking,” Opt. Lett. 17, 1128–1130 (1992).
    [CrossRef] [PubMed]
  12. R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
    [CrossRef]
  13. I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
    [CrossRef]
  14. J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
    [CrossRef]
  15. D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1072–1074 (2004).
    [CrossRef]
  16. T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35, 937–939 (2010).
    [CrossRef] [PubMed]
  17. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
    [CrossRef]
  18. M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
    [CrossRef]
  19. S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
    [CrossRef] [PubMed]
  20. B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
    [CrossRef]
  21. G. Giuliani, “The linewidth enhancement factor of semiconductor lasers: usefulness, limitations, and measurements,” in “23rd Annual Meeting of the IEEE Photonics Society, 2010,” 423–424 (2010).

2011

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
[CrossRef]

2010

2009

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009).
[CrossRef] [PubMed]

2008

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

2007

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

2006

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
[CrossRef] [PubMed]

2005

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

2004

2000

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

1999

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

1994

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

1992

1990

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

1988

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Akiyama, T.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Arakawa, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Bossert, D. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Chabran, C.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Chang, S. M.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Chen, J. X.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

D’ottavi, A.

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

Dagens, B.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Debarge, G.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Ebe, H.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Erneux, T.

Fiore, A.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Fischer, M.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Forchel, A.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Fordell, T.

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

Fuchs, B.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Gallion, P.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Gerhard, S.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Gerschutz, F.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Gioannini, M.

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

Giuliani, G.

G. Giuliani, “The linewidth enhancement factor of semiconductor lasers: usefulness, limitations, and measurements,” in “23rd Annual Meeting of the IEEE Photonics Society, 2010,” 423–424 (2010).

Gouezigou, O. L.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Goulding, D.

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35, 937–939 (2010).
[CrossRef] [PubMed]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Greene, G.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Grillot, F.

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
[CrossRef]

Hartnett, M.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Hatori, N.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Hayashi, K.

Hegarty, S. P.

Hofling, S.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Huang, C. C.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Hui, R.

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

Huyet, G.

Hwang, S. K.

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

Ida, Y.

Iiyama, K.

Ishida, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Juan, Y. S.

Kamp, M.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Kelleher, B.

Koeth, J.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Kovsh, A.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Krestnikov, I.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Landreau, J.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Lester, L. F.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Lin, F. Y.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010).
[CrossRef] [PubMed]

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009).
[CrossRef] [PubMed]

Lindberg, A. M.

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

Liu, J. M.

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

Make, D.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Malloy, K. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Markus, A.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

McInerney, J. G.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Mecozzi, A.

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

Melnik, S.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
[CrossRef] [PubMed]

Montrosset, I.

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

Nakata, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Newell, T. C.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

O’Brien, D.

Otsubo, K.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Petitbon, I.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

Provost, J. G.

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
[CrossRef]

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Rachinskii, D.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Rasskazov, O.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Schilling, C.

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

Sevega, A.

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

Simpson, T. B.

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

Spano, P.

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

Stintz, A.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Sugawara, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Thedrez, B.

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Tu, S. Y.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

Uskov, A.

Uskov, A. V.

Viktorov, E. A.

Electron. Lett.

R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997–998 (1990).
[CrossRef]

B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. L. Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

IEEE J. Quantum Electron.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
[CrossRef]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.  15, 604–611 (2009).
[CrossRef]

IEEE Photon. J.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon. J. 3, 476–488 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-dependent linewidth enhancement factor of quantum-dot lasers,” IEEE Photon. Technol. Lett. 20, 1736–1738 (2008).
[CrossRef]

J. Appl. Phys.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Opt. Commun.

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38, 381–394 (2006).
[CrossRef]

Phys. Rev. Lett.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Other

G. Giuliani, “The linewidth enhancement factor of semiconductor lasers: usefulness, limitations, and measurements,” in “23rd Annual Meeting of the IEEE Photonics Society, 2010,” 423–424 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Regenerated signals, (b) four-wave mixing signals, and (c) power spectra from the numerical simulation (green dots) and the analytical solutions based on the simplified model (blue curves), respectively.

Fig. 2
Fig. 2

Schematic setup of the four-wave mixing analysis. TL: tunable laser; LD: QD laser diode; FR: Faraday rotator; HW: half-wave plate; PBS: polarizing beamsplitter; PD: photodiode; SA: spectrum analyzer; VA: variable attenuator; AOM: acousto-optic modulator; B: beam block; FC: 50/50 fiber coupler.

Fig. 3
Fig. 3

Experimentally obtained (a)–(d) regenerated signals and (e)–(h) power spectra of the QD laser under the FWM states at different bias currents (red dots). Blue curves are the least square fitting calculated from the analytical model.

Fig. 4
Fig. 4

Calculated regenerative signals (left column) and power spectra (right column) of the QD laser with different values of (a)(b) α, (c)(d) γd, (e)(f) g0, and (g)(h) γs, respectively.

Tables (2)

Tables Icon

Table 1 Parameters of the Quantum Dot Laser used in Fig. 1

Tables Icon

Table 2 The Extracted Intrinsic Parameters of the QD Laser and Their Error Ranges

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d E d t = 1 2 υ g g 0 ( 2 ρ 1 1 + ɛ | E | 2 γ s υ g g 0 ) ( 1 i α ) E + γ s E i e i Δ t
d ρ d t = γ d ρ + C N W ( 1 ρ ) υ g ς ( 2 ρ 1 1 + ɛ | E | 2 ) | E | 2
d N W d t = γ N N W + J q 2 C N W ( 1 ρ ) ,
E ( t ) = E 0 + E r e i Δ t + E f e i Δ t ,
ρ ( t ) = ρ 0 + ρ 1 e i Δ t + ρ 1 * e i Δ t ,
N W = J / q γ N + 2 C ( 1 ρ )
| E | 2 | E 0 | 2 ( 1 + σ e i Δ t + σ * e i Δ t )
1 1 + ɛ | E | 2 1 1 + ɛ | E 0 | 2
N W = J / q 2 C ( 1 ρ )
E r E 0 = i ρ 1 G ( 1 i α ) Δ K
E f E 0 = i ρ 1 * G ( 1 i α ) Δ
σ = ρ 1 Z ,
ρ 1 = K Z + W , G = υ g g 0 1 + ɛ | E 0 | 2 , K = i γ s Δ E i E 0 , W = i 2 G Δ
Z = [ 2 υ g ς | E 0 | 2 1 + ɛ | E 0 | 2 i Δ + γ d ] / [ υ g ς | E 0 | 2 ( 2 ρ 0 1 ) 1 + ɛ | E 0 | 2 ]

Metrics