Abstract

Spin process is the most effective and diffused way to reduce polarization mode dispersion in single-mode optical fibers. All theoretical models adopted so far to describe spun fibers assume that the only effect of spin is to rotate fiber birefringence, without affecting its strength. Yet, experimental analyses of this hypothesis are controversial. In this paper, we report on an extensive experimental characterization of birefringence in spun and unspun fibers. Results indicate that the spinning process has no instantaneous effect on birefringence strength, regardless of the kind of fiber; nevertheless, there might be a small average effect on G.652 fibers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galtarossa and C. R. Menyuk, Polarization Mode Dispersion (Springer, New York, 2005).
    [CrossRef]
  2. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16, 804–817 (2008).
    [CrossRef] [PubMed]
  3. L. Nelson, S. Woodward, S. Foo, X. Zhou, M. Feuer, D. Hanson, D. McGhan, H. Sun, M. Moyer, M. O. Sullivan, and P. Magill, “Performance of a 46-Gb/s dual-polarization QPSK transceiver with real-time coherent equalization over high PMD fiber,” J. Lightwave Technol. 27, 158–167 (2009).
    [CrossRef]
  4. O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009).
    [CrossRef]
  5. P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmissions,” J. Lightwave Technol. 29, 1691–1700 (2011).
    [CrossRef]
  6. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20, 2962–2968 (1981).
    [CrossRef] [PubMed]
  7. M. J. Li and D. A. Nolan, “Fiber spin-profile designs for producing fibers with low polarization mode dispersion,” Opt. Lett. 23, 1659–1661 (1998).
    [CrossRef]
  8. A. Galtarossa, L. Palmieri, and A. Pizzinat, “Optimized spinning design for low PMD fibers: an analytical approach,” J. Lightwave Technol. 19, 1502–1512 (2001).
    [CrossRef]
  9. A. Galtarossa, L. Palmieri, and D. Sarchi, “Measure of spin period in randomly birefringent low-PMD fibers,” IEEE Photon. Technol. Lett. 16, 1131–1133 (2004).
    [CrossRef]
  10. G. Bouquet, L. A. de Montmorillon, and P. Nouchi, “Analytical solution of polarization mode dispersion for triangular spun fibers,” Opt. Lett. 29, 2118–2120 (2004).
    [CrossRef] [PubMed]
  11. M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
    [CrossRef]
  12. S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
    [CrossRef]
  13. L. Palmieri, “Polarization properties of spun single-mode fibers,” J. Lightwave Technol. 24, 4075–4088 (2006).
    [CrossRef]
  14. A. Galtarossa, D. Grosso, L. Palmieri, and M. Rizzo, “Spin-profile characterization in randomly birefringent spun fibers by means of frequency-domain reflectometry,” Opt. Lett. 34, 1078–1080 (2009).
    [CrossRef] [PubMed]
  15. L. Palmieri, T. Geisler, and A. Galtarossa, “Experimental evidences of independence between birefringence modulus and spin rate in periodically spun fibers,” in 37th European Conference on Optical Communication (ECOC) (2011), paper Th.12.LeCervin.3.
  16. A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Reflectometric measurement of birefringence rotation in single-mode optical fibers,” Opt. Lett. 33, 2284–2286 (2008).
    [CrossRef] [PubMed]
  17. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
    [CrossRef]
  18. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.  38, 49–95 (1996).
    [CrossRef]
  19. L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011).
    [CrossRef] [PubMed]
  20. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979).
    [CrossRef] [PubMed]
  21. D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6, 227–232 (2000).
    [CrossRef]

2011 (2)

2009 (3)

2008 (2)

2006 (2)

2004 (3)

A. Galtarossa, L. Palmieri, and D. Sarchi, “Measure of spin period in randomly birefringent low-PMD fibers,” IEEE Photon. Technol. Lett. 16, 1131–1133 (2004).
[CrossRef]

G. Bouquet, L. A. de Montmorillon, and P. Nouchi, “Analytical solution of polarization mode dispersion for triangular spun fibers,” Opt. Lett. 29, 2118–2120 (2004).
[CrossRef] [PubMed]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

2001 (1)

2000 (1)

D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6, 227–232 (2000).
[CrossRef]

1998 (1)

1996 (1)

L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.  38, 49–95 (1996).
[CrossRef]

1981 (1)

1979 (1)

1964 (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[CrossRef]

Barlow, A. J.

Bertran-Pardo, O.

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmissions,” J. Lightwave Technol. 29, 1691–1700 (2011).
[CrossRef]

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009).
[CrossRef]

Bigo, S.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009).
[CrossRef]

Bononi, A.

Bouquet, G.

Boyd, S.

L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.  38, 49–95 (1996).
[CrossRef]

Charlet, G.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009).
[CrossRef]

Chowdhury, D.

D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6, 227–232 (2000).
[CrossRef]

de Montmorillon, L. A.

Ferrario, M.

S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
[CrossRef]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

Feuer, M.

Foo, S.

Galtarossa, A.

Geisler, T.

L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011).
[CrossRef] [PubMed]

L. Palmieri, T. Geisler, and A. Galtarossa, “Experimental evidences of independence between birefringence modulus and spin rate in periodically spun fibers,” in 37th European Conference on Optical Communication (ECOC) (2011), paper Th.12.LeCervin.3.

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[CrossRef]

Grosso, D.

Hanson, D.

Li, M. J.

Magill, P.

Mardoyan, H.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009).
[CrossRef]

Martinelli, M.

S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
[CrossRef]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

McGhan, D.

Menyuk, C. R.

A. Galtarossa and C. R. Menyuk, Polarization Mode Dispersion (Springer, New York, 2005).
[CrossRef]

Moyer, M.

Nelson, L.

Nolan, D. A.

Nouchi, P.

Palmieri, L.

Payne, D. N.

Pietralunga, S. M.

S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
[CrossRef]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

Pizzinat, A.

Ramskov-Hansen, J. J.

Renaudier, J.

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmissions,” J. Lightwave Technol. 29, 1691–1700 (2011).
[CrossRef]

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009).
[CrossRef]

Rizzo, M.

Rossi, N.

Salsi, M.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009).
[CrossRef]

Sarchi, D.

A. Galtarossa, L. Palmieri, and D. Sarchi, “Measure of spin period in randomly birefringent low-PMD fibers,” IEEE Photon. Technol. Lett. 16, 1131–1133 (2004).
[CrossRef]

Savitzky, A.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[CrossRef]

Savory, S. J.

Schenato, L.

Serena, P.

Simon, A.

Sullivan, M. O.

Sun, H.

Tacca, M.

Torregiani, M.

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

Tran, P.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009).
[CrossRef]

Ulrich, R.

Vandenberghe, L.

L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.  38, 49–95 (1996).
[CrossRef]

Vannucci, A.

Wilcox, D.

D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6, 227–232 (2000).
[CrossRef]

Woodward, S.

Zhou, X.

Anal. Chem. (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[CrossRef]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6, 227–232 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009).
[CrossRef]

A. Galtarossa, L. Palmieri, and D. Sarchi, “Measure of spin period in randomly birefringent low-PMD fibers,” IEEE Photon. Technol. Lett. 16, 1131–1133 (2004).
[CrossRef]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (2)

Opt. Lett. (4)

SIAM Rev (1)

L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.  38, 49–95 (1996).
[CrossRef]

Other (2)

L. Palmieri, T. Geisler, and A. Galtarossa, “Experimental evidences of independence between birefringence modulus and spin rate in periodically spun fibers,” in 37th European Conference on Optical Communication (ECOC) (2011), paper Th.12.LeCervin.3.

A. Galtarossa and C. R. Menyuk, Polarization Mode Dispersion (Springer, New York, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Measured angle of rotation of birefringence measured on quasi-unidirectionally spun fiber samples without (dashed curve, sample G2) and with (solid curve, sample G3) spin inversion. (b)–(c) Example of analysis of instantaneous effect (data refer to sample B; see Table 2): (b) measured absolute spin rate; (c) measured birefringence strength (blue curve) and the fitting curves given by the linear model (black) and the polynomial one (red).

Tables (2)

Tables Icon

Table 1 List of Preforms Used to Draw Fiber Samples and Their General Properties

Tables Icon

Table 2 Experimental Results

Metrics