Abstract

A major issue so far for digital holography is the low spatial resolution generally achieved. The numerical aperture is limited by the area of currently available detectors, such as CCD sensors, which is significantly lower than that of a holographic plate. This is an even more severe constraint when IR sensors such as microbolometers are taken into account. In order to increase the numerical aperture of such systems, we developed an automatic technique which is capable of recording several holograms and of stitching them together, obtaining a digital hologram with a synthetic but larger numerical aperture. In this way we show that more detail can be resolved and a wider parallax angle can be achieved. The method is demonstrated for visible as well IR digital holography, recording and displaying large size objects.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and M. Meucci, “Digital holography at 10.6 ?m,” Opt. Commun. 215(4-6), 257–262 (2003).
    [CrossRef]
  2. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18(13), 14159–14164 (2010).
    [CrossRef] [PubMed]
  3. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
    [CrossRef] [PubMed]
  4. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
    [CrossRef] [PubMed]
  5. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
    [CrossRef] [PubMed]
  6. Y. Kuznetsova, A. Neumann, and S. R. Brueck, “Imaging interferometric microscopy-approaching the linear systems limits of optical resolution,” Opt. Express 15(11), 6651–6663 (2007).
    [CrossRef] [PubMed]
  7. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45(5), 822–828 (2006).
    [CrossRef] [PubMed]
  8. L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16(1), 161–169 (2008).
    [CrossRef] [PubMed]
  9. F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26(20), 1550–1552 (2001).
    [CrossRef] [PubMed]
  10. R. Binet, J. Colineau, and J.-C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41(23), 4775–4782 (2002).
    [CrossRef] [PubMed]
  11. B. M. Hennelly, T. J. Naughton, and J. McDonald, “Digital holographic superresolution by rotating the object wavefield,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuD5.
  12. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
    [CrossRef]
  13. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16(21), 17107–17118 (2008).
    [CrossRef] [PubMed]
  14. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34(23), 3650–3652 (2009).
    [CrossRef] [PubMed]
  15. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
    [CrossRef] [PubMed]
  16. F. Gyímesi, Z. Füzessy, V. Borbély, B. Ráczkevi, G. Molnár, A. Czitrovszky, A. Tibor Nagy, G. Molnárka, A. Lotfi, A. Nagy, I. Harmati, and D. Szigethy, “Half-magnitude extensions of resolution and field of view in digital holography by scanning and magnification,” Appl. Opt. 48(31), 6026–6034 (2009).
    [CrossRef] [PubMed]
  17. V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt. 11(12), 125408 (2009).
    [CrossRef]
  18. A. Gruen, “Adaptive least square correlation: a powerful image matching technique,” S. Afr. J. Photogrammet. 14, 175–187 (1985).
  19. D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
    [CrossRef]
  20. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
    [CrossRef]
  21. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-12-2112 .
    [CrossRef] [PubMed]
  22. J. M. Fitzpatrick and D. L. G. Hill, and C. R. Maurer, Jr., “Image registration,” in Handbook of Medical Imaging—Volume 2, Medical Image Processing And Analysis, M. Sonka and J. M. Fitzpatrick, eds. (SPIE Press, 2000), Chap. 8.
  23. B. Zitovà and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003).
    [CrossRef]
  24. F. Maes, D. Vandermeulen, and P. Suetens, “Medical image registration using mutual information,” Proc IEEE 91(10), 1699–1722 (2003).
    [CrossRef]
  25. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16(2), 187–198 (1997).
    [CrossRef] [PubMed]
  26. A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal, “Automated multimodality medical image registration using information theory,” in Proceedings XIVth International Conference on Information Processing in Medical Imaging—IPMI'95, Computational Imaging and Vision (Kluwer Academic, 1995), Vol. 3, pp. 263–274.

2010

2009

2008

2007

2006

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45(5), 822–828 (2006).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

2004

D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

2003

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and M. Meucci, “Digital holography at 10.6 ?m,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

B. Zitovà and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003).
[CrossRef]

F. Maes, D. Vandermeulen, and P. Suetens, “Medical image registration using mutual information,” Proc IEEE 91(10), 1699–1722 (2003).
[CrossRef]

2002

2001

1997

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16(2), 187–198 (1997).
[CrossRef] [PubMed]

1985

A. Gruen, “Adaptive least square correlation: a powerful image matching technique,” S. Afr. J. Photogrammet. 14, 175–187 (1985).

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Allaria, E.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and M. Meucci, “Digital holography at 10.6 ?m,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

Bay, H.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

Binet, R.

Bo, F.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Borbély, V.

Brueck, S. R.

Brugioni, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and M. Meucci, “Digital holography at 10.6 ?m,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

Colineau, J.

Collignon, A.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16(2), 187–198 (1997).
[CrossRef] [PubMed]

Collot, L.

Czitrovszky, A.

De Nicola, S.

Eigenthaler, U.

Ess, A.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

Faridian, A.

Ferraro, P.

Finizio, A.

Flusser, J.

B. Zitovà and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003).
[CrossRef]

Füzessy, Z.

García, J.

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt. 11(12), 125408 (2009).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45(5), 822–828 (2006).
[CrossRef] [PubMed]

García-Martínez, P.

Gertrude, A.

Granero, L.

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt. 11(12), 125408 (2009).
[CrossRef]

Grilli, S.

Gross, M.

Gruen, A.

A. Gruen, “Adaptive least square correlation: a powerful image matching technique,” S. Afr. J. Photogrammet. 14, 175–187 (1985).

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Gyímesi, F.

Harmati, I.

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Hirscher, M.

Hopp, D.

Javidi, B.

Kuznetsova, Y.

Le Clerc, F.

Lehureau, J.-C.

Liu, C.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Liu, Z.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Locatelli, M.

Lotfi, A.

Lowe, D.

D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

Maes, F.

F. Maes, D. Vandermeulen, and P. Suetens, “Medical image registration using mutual information,” Proc IEEE 91(10), 1699–1722 (2003).
[CrossRef]

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16(2), 187–198 (1997).
[CrossRef] [PubMed]

Marchal, G.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16(2), 187–198 (1997).
[CrossRef] [PubMed]

Martínez-León, L.

Massig, J. H.

Memmolo, P.

Merola, F.

Meucci, M.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and M. Meucci, “Digital holography at 10.6 ?m,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

Meucci, R.

Miccio, L.

Mico, V.

Micó, V.

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt. 11(12), 125408 (2009).
[CrossRef]

Molnár, G.

Molnárka, G.

Nagy, A.

Näsänen, R.

Naughton, T. J.

Neumann, A.

Osten, W.

Paturzo, M.

Pedrini, G.

Pelagotti, A.

Poggi, P.

Ráczkevi, B.

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Suetens, P.

F. Maes, D. Vandermeulen, and P. Suetens, “Medical image registration using mutual information,” Proc IEEE 91(10), 1699–1722 (2003).
[CrossRef]

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16(2), 187–198 (1997).
[CrossRef] [PubMed]

Szigethy, D.

Tibor Nagy, A.

Tuytelaars, T.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

Van Gool, L.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

Vandermeulen, D.

F. Maes, D. Vandermeulen, and P. Suetens, “Medical image registration using mutual information,” Proc IEEE 91(10), 1699–1722 (2003).
[CrossRef]

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16(2), 187–198 (1997).
[CrossRef] [PubMed]

Vespini, V.

Wang, Y.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Zalevsky, Z.

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt. 11(12), 125408 (2009).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45(5), 822–828 (2006).
[CrossRef] [PubMed]

Zhu, J.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Zitovà, B.

B. Zitovà and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Comput. Vis. Image Underst.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

IEEE Trans. Med. Imaging

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16(2), 187–198 (1997).
[CrossRef] [PubMed]

Image Vis. Comput.

B. Zitovà and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003).
[CrossRef]

Int. J. Comput. Vis.

D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt. 11(12), 125408 (2009).
[CrossRef]

Opt. Commun.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and M. Meucci, “Digital holography at 10.6 ?m,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Proc IEEE

F. Maes, D. Vandermeulen, and P. Suetens, “Medical image registration using mutual information,” Proc IEEE 91(10), 1699–1722 (2003).
[CrossRef]

S. Afr. J. Photogrammet.

A. Gruen, “Adaptive least square correlation: a powerful image matching technique,” S. Afr. J. Photogrammet. 14, 175–187 (1985).

Other

B. M. Hennelly, T. J. Naughton, and J. McDonald, “Digital holographic superresolution by rotating the object wavefield,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuD5.

J. M. Fitzpatrick and D. L. G. Hill, and C. R. Maurer, Jr., “Image registration,” in Handbook of Medical Imaging—Volume 2, Medical Image Processing And Analysis, M. Sonka and J. M. Fitzpatrick, eds. (SPIE Press, 2000), Chap. 8.

A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal, “Automated multimodality medical image registration using information theory,” in Proceedings XIVth International Conference on Information Processing in Medical Imaging—IPMI'95, Computational Imaging and Vision (Kluwer Academic, 1995), Vol. 3, pp. 263–274.

Supplementary Material (2)

» Media 1: MOV (504 KB)     
» Media 2: AVI (3909 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sketch of the experimental setup used to acquire the statuettes’ holograms: BS (beamsplitter), L1and L2 (lenses), M1 and M2 (mirrors).

Fig. 2
Fig. 2

Numerical reconstructions of a single (a) and a stitched hologram obtained joining 4 × 3 single holograms by the proposed algorithm (b).

Fig. 3
Fig. 3

Scattered plot of MI (a) CC (b) values obtained by the registration algorithm when changing the tx and ty parameters.

Fig. 4
Fig. 4

Numerical reconstructions of a stitched hologram obtained sewing up four IR hologram of a “Perseus” statuette, by means of the proposed algorithm (a) and by manual joining (b).

Fig. 5
Fig. 5

(a) One of the acquired hologram, (b) Synthetic hologram obtained by means of the stitching algorithm, (c) picture of the object.

Fig. 6
Fig. 6

Numerical reconstruction: Amplitude reconstruction obtained by the single hologram (a) and by the joint hologram (b).

Fig. 7
Fig. 7

(a) synthetic hologram obtained stitching together 3 × 7 single holograms and its numerical reconstructions at two different distances, 515 mm (b) and 505 mm (c). The increasing of the numerical aperture implies a decreasing of the depth of focus.

Fig. 8
Fig. 8

Single IR hologram (a) and its numerical reconstructions at two different distances, 515 mm (b) and 505 mm (c). Because of the low numerical aperture no differences in the two images is visible.

Fig. 9
Fig. 9

(a, Media 1) Frame of the movie showing the numerical reconstruction of the left and right part of the stitched hologram, (b, Media 2) frame of the movie displaying sequentially seven 1920 × 1080 holograms extracted from the stitched hologram.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I(X,Y)= x,y p XY (x,y)× log 2 p XY (x,y) p X (x) p Y (y)
α*=arg max α I(X,Y)
p XY,α (x,y)= h α (x,y) x,y h α (x,y) p X,α (x)= y p XY,α (x,y) p Y,α (y)= x p XY,α (x,y)
x '=L x + t
t =[ t x , t y ]
R=[ cosθ senθ senθ cosθ ]
x '=sR x + t
i w i ( T α (p))=1 Y( T α (p))= i w i Y( n i ) h α (X(p),Y( T α (p)))=+1

Metrics