Abstract

We review our recent work on the various nonlinear optical processes that occur as an intense laser propagates through a relativistic plasma. These include the experimental observations of electron acceleration driven by laser-wakefield generation, relativistic self-focusing, waveguide formation and laser self-channeling.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Umstadter and T. B. Norris, Eds., “Feature Issue on Optics of Relativistic Electrons,” IEEE J. Quantum. Electron. 33, 1877–1968 (1997).
    [Crossref]
  2. E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of Plasma-Based Accelerator Concepts,” IEEE Trans. Plasma Sci. PS-24, 252 (1996), and references cited therein.
    [Crossref]
  3. D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear Optics in Relativistic Plasmas and Laser Wakefield Acceleration of Electrons,” Science 273, 472 (1996).
    [Crossref] [PubMed]
  4. A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
    [Crossref]
  5. R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Relativistically Self-Guided Laser Wakefield Acceleration,” Phys. Rev. Lett. 78, 3122 (1997).
    [Crossref]
  6. S.-Y. Chen, G. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, “Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse,” Phys. Rev. Lett. (submitted for publication, 1997).
  7. S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
    [Crossref] [PubMed]
  8. K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
    [Crossref]

1997 (3)

D. Umstadter and T. B. Norris, Eds., “Feature Issue on Optics of Relativistic Electrons,” IEEE J. Quantum. Electron. 33, 1877–1968 (1997).
[Crossref]

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Relativistically Self-Guided Laser Wakefield Acceleration,” Phys. Rev. Lett. 78, 3122 (1997).
[Crossref]

K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
[Crossref]

1996 (3)

S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
[Crossref] [PubMed]

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of Plasma-Based Accelerator Concepts,” IEEE Trans. Plasma Sci. PS-24, 252 (1996), and references cited therein.
[Crossref]

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear Optics in Relativistic Plasmas and Laser Wakefield Acceleration of Electrons,” Science 273, 472 (1996).
[Crossref] [PubMed]

1995 (1)

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Baine, M.

K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
[Crossref]

Burris, H.R.

K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
[Crossref]

Chen, S.-Y.

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Relativistically Self-Guided Laser Wakefield Acceleration,” Phys. Rev. Lett. 78, 3122 (1997).
[Crossref]

S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
[Crossref] [PubMed]

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear Optics in Relativistic Plasmas and Laser Wakefield Acceleration of Electrons,” Science 273, 472 (1996).
[Crossref] [PubMed]

S.-Y. Chen, G. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, “Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse,” Phys. Rev. Lett. (submitted for publication, 1997).

Clayton, C.E.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Dangor, A.E.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Danson, C.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Darrow, C.B.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Downer, M. C.

S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
[Crossref] [PubMed]

Esarey, E.

K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
[Crossref]

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of Plasma-Based Accelerator Concepts,” IEEE Trans. Plasma Sci. PS-24, 252 (1996), and references cited therein.
[Crossref]

Joshi, C.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Krall, J.

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of Plasma-Based Accelerator Concepts,” IEEE Trans. Plasma Sci. PS-24, 252 (1996), and references cited therein.
[Crossref]

Krushelnick, K.

K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
[Crossref]

Le Blanc, S. P.

S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
[Crossref] [PubMed]

Maksimchuk, A.

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Relativistically Self-Guided Laser Wakefield Acceleration,” Phys. Rev. Lett. 78, 3122 (1997).
[Crossref]

S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
[Crossref] [PubMed]

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear Optics in Relativistic Plasmas and Laser Wakefield Acceleration of Electrons,” Science 273, 472 (1996).
[Crossref] [PubMed]

S.-Y. Chen, G. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, “Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse,” Phys. Rev. Lett. (submitted for publication, 1997).

Malka, V.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Marsh, K.A.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Modena, A.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Moore, C.I.

K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
[Crossref]

Mourou, G.

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear Optics in Relativistic Plasmas and Laser Wakefield Acceleration of Electrons,” Science 273, 472 (1996).
[Crossref] [PubMed]

S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
[Crossref] [PubMed]

Najmudin, Z.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Neely, D.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Sarkisov, G.

S.-Y. Chen, G. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, “Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse,” Phys. Rev. Lett. (submitted for publication, 1997).

Sprangle, P.

K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
[Crossref]

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of Plasma-Based Accelerator Concepts,” IEEE Trans. Plasma Sci. PS-24, 252 (1996), and references cited therein.
[Crossref]

Ting, A.

K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
[Crossref]

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of Plasma-Based Accelerator Concepts,” IEEE Trans. Plasma Sci. PS-24, 252 (1996), and references cited therein.
[Crossref]

Umstadter, D.

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Relativistically Self-Guided Laser Wakefield Acceleration,” Phys. Rev. Lett. 78, 3122 (1997).
[Crossref]

S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
[Crossref] [PubMed]

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear Optics in Relativistic Plasmas and Laser Wakefield Acceleration of Electrons,” Science 273, 472 (1996).
[Crossref] [PubMed]

S.-Y. Chen, G. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, “Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse,” Phys. Rev. Lett. (submitted for publication, 1997).

Wagner, R.

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Relativistically Self-Guided Laser Wakefield Acceleration,” Phys. Rev. Lett. 78, 3122 (1997).
[Crossref]

S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
[Crossref] [PubMed]

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear Optics in Relativistic Plasmas and Laser Wakefield Acceleration of Electrons,” Science 273, 472 (1996).
[Crossref] [PubMed]

S.-Y. Chen, G. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, “Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse,” Phys. Rev. Lett. (submitted for publication, 1997).

Walsh, F.N.

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

IEEE J. Quantum. Electron. (1)

D. Umstadter and T. B. Norris, Eds., “Feature Issue on Optics of Relativistic Electrons,” IEEE J. Quantum. Electron. 33, 1877–1968 (1997).
[Crossref]

IEEE Trans. Plasma Sci. (1)

E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of Plasma-Based Accelerator Concepts,” IEEE Trans. Plasma Sci. PS-24, 252 (1996), and references cited therein.
[Crossref]

Nature (1)

A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, “Electron Acceleration from the Breaking of Relativistic Plasma Waves”, Nature,  377, 606, (1995).
[Crossref]

Phys. Rev. Lett. (3)

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Relativistically Self-Guided Laser Wakefield Acceleration,” Phys. Rev. Lett. 78, 3122 (1997).
[Crossref]

S. P. Le Blanc, M. C. Downer, R. Wagner, S.-Y. Chen, A. Maksimchuk, G. Mourou, and D. Umstadter, “Temporal Characterization of a Self-Modulated Laser Wakefield,” Phys. Rev. Lett. 77, 5381 (1996).
[Crossref] [PubMed]

K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, and M. Baine, “Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments,” Phys. Rev. Lett. 78, 4047 (1997).
[Crossref]

Science (1)

D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, “Nonlinear Optics in Relativistic Plasmas and Laser Wakefield Acceleration of Electrons,” Science 273, 472 (1996).
[Crossref] [PubMed]

Other (1)

S.-Y. Chen, G. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, “Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse,” Phys. Rev. Lett. (submitted for publication, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1.
Figure 1.

(left) The number of relativistic electrons accelerated as a function of incident laser power focused in a gas of helium at atmospheric density. (right) Normalized electron kinetic energy spectrum as a function of laser power at fixed electron density. The upper curves represent the spectra obtained when self-guiding was observed; the lower curves represent unguided spectra.

Figure 2.
Figure 2.

On-axis images (left) and corresponding lineouts (right) of sidescattered light at various laser powers and a fixed initial electron density of 3.6 × 1019 cm-3. The various images and lineouts represent laser powers of P/Pc = (a) 1.6, (b) 2.6, (c) 3.9, (d) 5.5, (e) 7.2, (f) 8.4, and (g) 9.1. Note: the curves have been displaced vertically for ease of viewing.

Figure 3.
Figure 3.

Electron beam divergence as a function of laser power. The various curves represent laser powers of P/Pc = (a) 3.4, (b) 5.0, (c) 6.0, and (d) 7.5. The two insert figures show the complete beam images for curves (a) and (c).

Figure 4.
Figure 4.

2-D plasma density distribution for 2.5 TW laser power and 2 × 1019 cm-3 gas density at different times: (a) 5 ps, (b) 15 ps, (c) 30 ps, and (d) 40 ps.

Metrics