Abstract

We present simple analytical formulas describing the evolution from circular to linear polarization of the relativistic deflection of photoelectron trajectories along the direction of laser light propagation, and discuss conditions of applicability of the model used in calculations.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, Observation of the transition from Thomson to Compton scattering in multiphoton interactions with low-energy electrons, Phys. Rev. Lett. 74, 2439-2442 (1995).
    [CrossRef] [PubMed]
  2. D. D. Meyerhofer, J. P. Knauer, S. J. McNaught and C. I. Moore, Mass shift effects during high-intensity laser-electron interactions, J. Opt. Soc. Am. B 13, 113-117 (1996).
    [CrossRef]
  3. D. D. Meyerhofer, Laser-electron scattering at relativistic intensities, in Super - Intense Laser - Atom Physics IV, H. G. Muller and M. V. Fedorov, eds. (Kluwer Academic Publishers, Netherlands, 1996).
    [CrossRef]
  4. H. R. Reiss, "Relativistic strong-field ionization," J. Opt. Soc. Am. B 7, 574-586 (1990).
    [CrossRef]
  5. H. R. Reiss, "Theoretical methods in quantum optics: S-matrix and Keldysh techniques for strong-field processes," Prog. Quantum Electron. 16 1-71 (1992).
    [CrossRef]
  6. D. P. Crawford and H. R. Reiss, "Stabilization in relativistic ionization with circularly polarized light," Phys. Rev. A 50, 1844-1850 (1994).
    [CrossRef] [PubMed]
  7. P. B. Corkum, N. H. Burnett and F. Brunel, Multiphoton ionization at large ponderomotive potentials, in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic Press, New York, 1992).
  8. S. P. Goreslavskii, M. V. Fedorov and A. A. Kilpio, Relativistic drift of an electron under the influence of a short intense laser pulse, Laser Phys. 5, 1020 -1028 (1995).
  9. Y. I. Salamin, F. H. M. Faisal, Ponderomotive scattering of electrons in intense laser fields, Phys. Rev. A 55, 3678-3683 (1997).
    [CrossRef]
  10. J. N. Bardsley, B. M. Penetrante, M. H. Mittleman, Relativistic dynamics of electrons in intense laser fields, Phys. Rev. A 40, 3823-3835 (1997).
    [CrossRef]
  11. F. V. Hartemann, S. N. Fochs, G. P. Le Sage, N. C. Luhmann, Jr., J. G. Woodworth, M. D. Perry, Y. J. Chen, A. K. Kerman, Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field in focus, Phys. Rev. E 51, 4833-4843 (1995).
    [CrossRef]
  12. S. P. Goreslavskii, N. B. Narozhny, O. V. Shcherbachev, and V. P. Yakovlev, The dynamics and radiation of a relativistic electron in the field of an intense, focused laser pulse, Laser Phys. 3, 421-434, (1993).
  13. S. P. Goreslavsky and N. B. Narozhny, Ponderomotive scattering at relativistic laser intensities, J. Nonlinear Opt. Phys. Mater. 4, 799 - 815 (1995).
    [CrossRef]
  14. S. P. Goreslavskii, The BSI model and relativistic ponderomotive scattering, Laser Phys. 6, 74-78 (1996).
  15. S. P. Goreslavskii and S. V. Popruzhenko, Momentum distribution of photoelectrons in strong low- frequency elliptically polarized laser field, Laser Phys. 6, 780-784 (1996).
  16. S. P. Goreslavskii and S. V. Popruzhenko, Differential photoelectron distributions in a strong elliptically polarized low-frequency laser field, Zh. Eksp. Teor. Fiz. 110, 1200-1215 (1996) (JETP 83, 661-669).
  17. S. P. Goreslavskii and S. V. Popruzhenko, Photoelectron velocity distribution at the time of ionization by elliptically polarized laser field, Laser Phys. 7, 700-705 (1997).
  18. S. J. McNaught, J.P. Knauer, and D. D. Meyerhofer, Measurement of the initial condition of electrons ionized by a linearly polarized high-intensity laser, Phys. Rev. Lett. 78, 626-629 (1997).
    [CrossRef]
  19. S. J. McNaught, J. P. Knauer, and D. D. Meyerhofer, Photoelectron drift momentum in the long-pulse tunneling limit for an elliptically polarized laser, Laser Phys. 7, 712-718 (1996).

Other (19)

C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, Observation of the transition from Thomson to Compton scattering in multiphoton interactions with low-energy electrons, Phys. Rev. Lett. 74, 2439-2442 (1995).
[CrossRef] [PubMed]

D. D. Meyerhofer, J. P. Knauer, S. J. McNaught and C. I. Moore, Mass shift effects during high-intensity laser-electron interactions, J. Opt. Soc. Am. B 13, 113-117 (1996).
[CrossRef]

D. D. Meyerhofer, Laser-electron scattering at relativistic intensities, in Super - Intense Laser - Atom Physics IV, H. G. Muller and M. V. Fedorov, eds. (Kluwer Academic Publishers, Netherlands, 1996).
[CrossRef]

H. R. Reiss, "Relativistic strong-field ionization," J. Opt. Soc. Am. B 7, 574-586 (1990).
[CrossRef]

H. R. Reiss, "Theoretical methods in quantum optics: S-matrix and Keldysh techniques for strong-field processes," Prog. Quantum Electron. 16 1-71 (1992).
[CrossRef]

D. P. Crawford and H. R. Reiss, "Stabilization in relativistic ionization with circularly polarized light," Phys. Rev. A 50, 1844-1850 (1994).
[CrossRef] [PubMed]

P. B. Corkum, N. H. Burnett and F. Brunel, Multiphoton ionization at large ponderomotive potentials, in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic Press, New York, 1992).

S. P. Goreslavskii, M. V. Fedorov and A. A. Kilpio, Relativistic drift of an electron under the influence of a short intense laser pulse, Laser Phys. 5, 1020 -1028 (1995).

Y. I. Salamin, F. H. M. Faisal, Ponderomotive scattering of electrons in intense laser fields, Phys. Rev. A 55, 3678-3683 (1997).
[CrossRef]

J. N. Bardsley, B. M. Penetrante, M. H. Mittleman, Relativistic dynamics of electrons in intense laser fields, Phys. Rev. A 40, 3823-3835 (1997).
[CrossRef]

F. V. Hartemann, S. N. Fochs, G. P. Le Sage, N. C. Luhmann, Jr., J. G. Woodworth, M. D. Perry, Y. J. Chen, A. K. Kerman, Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field in focus, Phys. Rev. E 51, 4833-4843 (1995).
[CrossRef]

S. P. Goreslavskii, N. B. Narozhny, O. V. Shcherbachev, and V. P. Yakovlev, The dynamics and radiation of a relativistic electron in the field of an intense, focused laser pulse, Laser Phys. 3, 421-434, (1993).

S. P. Goreslavsky and N. B. Narozhny, Ponderomotive scattering at relativistic laser intensities, J. Nonlinear Opt. Phys. Mater. 4, 799 - 815 (1995).
[CrossRef]

S. P. Goreslavskii, The BSI model and relativistic ponderomotive scattering, Laser Phys. 6, 74-78 (1996).

S. P. Goreslavskii and S. V. Popruzhenko, Momentum distribution of photoelectrons in strong low- frequency elliptically polarized laser field, Laser Phys. 6, 780-784 (1996).

S. P. Goreslavskii and S. V. Popruzhenko, Differential photoelectron distributions in a strong elliptically polarized low-frequency laser field, Zh. Eksp. Teor. Fiz. 110, 1200-1215 (1996) (JETP 83, 661-669).

S. P. Goreslavskii and S. V. Popruzhenko, Photoelectron velocity distribution at the time of ionization by elliptically polarized laser field, Laser Phys. 7, 700-705 (1997).

S. J. McNaught, J.P. Knauer, and D. D. Meyerhofer, Measurement of the initial condition of electrons ionized by a linearly polarized high-intensity laser, Phys. Rev. Lett. 78, 626-629 (1997).
[CrossRef]

S. J. McNaught, J. P. Knauer, and D. D. Meyerhofer, Photoelectron drift momentum in the long-pulse tunneling limit for an elliptically polarized laser, Laser Phys. 7, 712-718 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (18)

Equations on this page are rendered with MathJax. Learn more.

A = A ( x , φ ; φ ) = cF x φ ω cos ωφ sin ωφ , 0 ,
π ( φ ) = e c [ A 0 A x 0 φ φ ] ;
c π z ( φ ) = π 2 ( φ ) 2 m ; π 0 ( φ ) = m c 2 + π 2 ( φ ) 2 m .
U = e 2 F 2 4 m ω 2 ( 1 + ξ 2 ) = 2 π e 2 I c ω 2 .
q ( φ ) = e c A 0 ; c q z ( φ ) = ( e A 0 c ) 2 2 m + U x 0 φ ;
q 0 ( φ ) = m c 2 + c q z ( φ ) .
t g 2 θ = q z 2 ( + ) q 2 ( + ) .
( e c A 0 ) 2 = ( e F 0 ω ) 2 ξ 2 + ( e F 0 ω ) 2 F 0 F a ( 1 ξ 2 ) .
t g 2 θ = m c 2 U 0 1 + ξ 2 ξ 2 + ( F 0 F a ) ( 1 ξ 2 ) .
q = q 0 c q z = mc .
q 0 2 c 2 q 2 = m 2 c 2 + 2 mU m * 2 c 2 ,
c q z ( ) = q 0 ( ) m c 2 ; c q z ( ) = q 2 ( ) 2 m .
c q z ( ) = ( e A 0 c ) 2 2 m + U 0 ; q ( ) = ( e c A 0 ) 2 + 2 m U 0 .
t g 2 θ = 2 m c 2 U 0 1 + ξ 2 1 + 3 ξ 2 + ( F 0 F a ) ( 1 ξ 2 ) .
Δ π z = Δ π 0 c
Δ π z = Δ ( π 2 ) 2 mc .
π = π 0 c π z = const .
π ˜ 0 = π 0 ± ω 1 ± ω 2 ± , π ˜ z = π z ± k z 1 ± k z 2 ±

Metrics