Abstract

In recent years, we realize the usefulness of feature extraction for optical correlator and hereby, we investigate the capability of Laplace operator in feature extraction of multiple targets. The first-order terms and the false alarm terms in the correlation output would be removed using electronic power spectrum subtraction technique. Most importantly, the entire magneto-optic SLM is completely utilized for displaying only targets in the input scene. A new cost efficient hardware implementation is proposed and aforementioned result of the proposed system is evaluated through computer simulation.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. S. Weaver and J. W. Goodman, "Technique for optically convolving two functions," Appl. Opt. 5, 1248-1249 (1966).<br>
    [CrossRef] [PubMed]
  2. A. B. VanderLugt, "Signal detection by complex spatial filtering," IEEE Trans. Inf. Theory IT-10 139-145 (1964).<br>
    [CrossRef]
  3. F. T. S. Yu and D. A. Gregory, "Optical Pattern Recognition: Architectures and Techniques," Proc. IEEE 84, 733-752 (1996).<br>
    [CrossRef]
  4. B. Javidi and C. K. Kuo, "Joint transform image correlation using a binary spatial light modulator at the Fourier plane," Appl. Opt. 27, 663-665 (1988).<br>
    [CrossRef] [PubMed]
  5. F. T. S. Yu, F. Cheng, T. Nagata, and D. A. Gregory, "Effects of fringe binarization of multiobject joint transform correlation," Appl. Opt. 28, 2988-2990 (1989).<br>
    [CrossRef] [PubMed]
  6. W. B. Hahn, Jr. and D. L. Flannery, "Design elements of binary joint transform correlation and selected optimization techniques," Opt. Eng. 31, 896-905 (1992).<br>
    [CrossRef]
  7. M.S. Alam and M. A. Karim, "Fringe-adjusted joint transform correlation," Appl. Opt. 32, 4344-4350 (1993).<br>
    [CrossRef] [PubMed]
  8. M. S. Alam and M. A. Karim, "Multiple target detection using a modified fringe-adjusted joint transform correlator," Opt. Eng. 33, 1610-1617 (1994).<br>
    [CrossRef]
  9. M. S. Alam, "Fractional power fringe-adjusted joint transform correlator," Opt. Eng. 43, 3208- 3216 (1995).<br>
    [CrossRef]
  10. B. Javidi, F. Parchekani, and G. S. Zhang, "Minimum-mean-square-error filters for detecting a noisy target in background noise," Appl. Opt. 35, 6964-6975 (1996).<br>
    [CrossRef] [PubMed]
  11. X. J. Lu, A. Katz, E. G. Kanterakis, and N. P. Caviris, "Joint transform correlator that uses wavelet transforms," Opt. Lett. 17, 1700-1702 (1992).<br>
    [CrossRef] [PubMed]
  12. W.L.Wang,G. F. Jin, Y. B. Yan, andM.X.Wu,"Jointwavelet-transformcorrelatorforimage feature extraction," Appl. Opt. 34, 370-376 (1995).<br>
    [CrossRef] [PubMed]
  13. F. Ahmed, M. A. Karim, and M. S. Alam, "Wavelet transform-based correlator for the recognition of rotationally distorted images," Opt. Eng. 34, 3187-3192 (1995).<br>
    [CrossRef]
  14. I. Ouzieli and D. Mendlovic, "Two-dimensional wavelet processor," Appl. Opt. 35, 5839-5846 (1996).<br>
    [CrossRef] [PubMed]
  15. M. S. Alam, O. Perez, and M. A. Karim, "Preprocessed multiobject joint transform correlator," Appl. Opt. 32, 3102-3107 (1993).<br>
    [CrossRef] [PubMed]
  16. S. Zhong, J. Jiang, and C. Li, "Joint wavelet transform correlator with power spectrum subtraction for improved performance," Opt. Eng. 36, 2787-2792 (1997).
    [CrossRef]
  17. X. Huang, H. Lai, and Z. Gao, "Multiple-Target detection with the use of a modified amplitude- modulated joint transform correlator," Appl. Opt. 36, 9198-9204 (1997).<br>
    [CrossRef]
  18. Q. Tang and B. Javidi, "Multiple-object detection with chirp-encodedjoint transform correlator," Appl. Opt. 32, 5079-5088 (1993).<br>
    [CrossRef] [PubMed]
  19. A. K. Jain, "Image Analysis and Computer Vision", Chap. 9 in Fundamentals of Digital Image Processing , T. Kailath, Ed., (Prentice Hall, Englewood Cliffs, 1989) pp. 351-353.

Other (19)

C. S. Weaver and J. W. Goodman, "Technique for optically convolving two functions," Appl. Opt. 5, 1248-1249 (1966).<br>
[CrossRef] [PubMed]

A. B. VanderLugt, "Signal detection by complex spatial filtering," IEEE Trans. Inf. Theory IT-10 139-145 (1964).<br>
[CrossRef]

F. T. S. Yu and D. A. Gregory, "Optical Pattern Recognition: Architectures and Techniques," Proc. IEEE 84, 733-752 (1996).<br>
[CrossRef]

B. Javidi and C. K. Kuo, "Joint transform image correlation using a binary spatial light modulator at the Fourier plane," Appl. Opt. 27, 663-665 (1988).<br>
[CrossRef] [PubMed]

F. T. S. Yu, F. Cheng, T. Nagata, and D. A. Gregory, "Effects of fringe binarization of multiobject joint transform correlation," Appl. Opt. 28, 2988-2990 (1989).<br>
[CrossRef] [PubMed]

W. B. Hahn, Jr. and D. L. Flannery, "Design elements of binary joint transform correlation and selected optimization techniques," Opt. Eng. 31, 896-905 (1992).<br>
[CrossRef]

M.S. Alam and M. A. Karim, "Fringe-adjusted joint transform correlation," Appl. Opt. 32, 4344-4350 (1993).<br>
[CrossRef] [PubMed]

M. S. Alam and M. A. Karim, "Multiple target detection using a modified fringe-adjusted joint transform correlator," Opt. Eng. 33, 1610-1617 (1994).<br>
[CrossRef]

M. S. Alam, "Fractional power fringe-adjusted joint transform correlator," Opt. Eng. 43, 3208- 3216 (1995).<br>
[CrossRef]

B. Javidi, F. Parchekani, and G. S. Zhang, "Minimum-mean-square-error filters for detecting a noisy target in background noise," Appl. Opt. 35, 6964-6975 (1996).<br>
[CrossRef] [PubMed]

X. J. Lu, A. Katz, E. G. Kanterakis, and N. P. Caviris, "Joint transform correlator that uses wavelet transforms," Opt. Lett. 17, 1700-1702 (1992).<br>
[CrossRef] [PubMed]

W.L.Wang,G. F. Jin, Y. B. Yan, andM.X.Wu,"Jointwavelet-transformcorrelatorforimage feature extraction," Appl. Opt. 34, 370-376 (1995).<br>
[CrossRef] [PubMed]

F. Ahmed, M. A. Karim, and M. S. Alam, "Wavelet transform-based correlator for the recognition of rotationally distorted images," Opt. Eng. 34, 3187-3192 (1995).<br>
[CrossRef]

I. Ouzieli and D. Mendlovic, "Two-dimensional wavelet processor," Appl. Opt. 35, 5839-5846 (1996).<br>
[CrossRef] [PubMed]

M. S. Alam, O. Perez, and M. A. Karim, "Preprocessed multiobject joint transform correlator," Appl. Opt. 32, 3102-3107 (1993).<br>
[CrossRef] [PubMed]

S. Zhong, J. Jiang, and C. Li, "Joint wavelet transform correlator with power spectrum subtraction for improved performance," Opt. Eng. 36, 2787-2792 (1997).
[CrossRef]

X. Huang, H. Lai, and Z. Gao, "Multiple-Target detection with the use of a modified amplitude- modulated joint transform correlator," Appl. Opt. 36, 9198-9204 (1997).<br>
[CrossRef]

Q. Tang and B. Javidi, "Multiple-object detection with chirp-encodedjoint transform correlator," Appl. Opt. 32, 5079-5088 (1993).<br>
[CrossRef] [PubMed]

A. K. Jain, "Image Analysis and Computer Vision", Chap. 9 in Fundamentals of Digital Image Processing , T. Kailath, Ed., (Prentice Hall, Englewood Cliffs, 1989) pp. 351-353.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The single SLM correlator architecture.

Fig. 2.
Fig. 2.

The power spectrum of the Laplace operator.

Fig. 3.
Fig. 3.

The joint input scene of the four cartoon images and the Laplace operator.

Fig. 4.
Fig. 4.

The correlator output of the four cartoon images.

Fig. 5.
Fig. 5.

The rotated and superimposed crosscorrelation output of the four cartoon images.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

f ( x , y ) = i = 1 4 t i ( x x i , y y i ) + r ( x x 0 , y + y 0 ) ,
F ( u , v ) = i = 1 4 T i ( u , v ) e j 2 π ( u x i v y i ) + R ( u , v ) e j 2 π ( u x 0 + v y 0 ) ,
F ( u , v ) 2 = R ( u , v ) 2 + i = 1 4 T i ( u , v ) 2
+ 2 i = 1 4 R ( u , v ) T i ( u , v ) cos [ ϕ t i ϕ r + j 2 π ( u ( x i + x 0 ) + v ( y i y 0 ) ) ]
+ 2 i = 1 4 k = 1 4 T i ( u , v ) T k ( u , v ) cos [ ϕ t i ϕ t k
+ j 2 π ( u ( x i + x k ) + v ( y i y k ) ) ] ,
F T ( u , v ) 2 = i = 1 4 T i ( u , v ) 2
+ 2 i = 1 4 k = 1 4 T i ( u , v ) T k ( u , v ) cos [ ϕ t i ϕ t k
+ j 2 π ( u ( x i + x k ) + v ( y i y k ) ) ] ,
F R ( u , v ) 2 = R ( u , v ) 2 .
M ( u , v ) 2 = F ( u , v ) 2 F T ( u , v ) 2 F R ( u , v ) 2
= 2 i = 1 4 R ( u , v ) T i ( u , v ) cos [ ϕ t i ϕ r + j 2 π ( u ( x i + x 0 ) + v ( y i y 0 ) ) ] .
[ 1 1 1 1 8 1 1 1 1 ] .

Metrics