Abstract

Spontaneous emission control has been achieved in GaAs/AlGaAs quantum well lasers by the use of Bragg reflectors to define a micro-cavity perpendicular to the quantum wells. The room temperature emission is inhibited whilst below 130K there is an enhancement. These changes to the spontaneous recombination process directly effect the threshold current producing a 25% reduction at room temperature. Theoretical modeling of the lasers is in agreement with the experimental results and highlights the effect of the micro-cavity in altering the overlap of the electro-magnetic field with the quantum well dipole oscillators.

© 1998 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Subwavelength semiconductor lasers for dense chip-scale integration

Qing Gu, Joseph S. T. Smalley, Maziar P. Nezhad, Aleksandar Simic, Jin Hyoung Lee, Michael Katz, Olesya Bondarenko, Boris Slutsky, Amit Mizrahi, Vitaliy Lomakin, and Yeshaiahu Fainman
Adv. Opt. Photon. 6(1) 1-56 (2014)

Carrier saturation in multiple quantum well metallo-dielectric semiconductor nanolaser: Is bulk material a better choice for gain media?

Felipe Vallini, Qing Gu, Michael Kats, Yeshaiahu Fainman, and Newton C. Frateschi
Opt. Express 21(22) 25985-25998 (2013)

Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi
J. Opt. Soc. Am. B 15(4) 1295-1304 (1998)

References

  • View by:
  • |
  • |
  • |

  1. L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, New York,1995).
  2. P. Blood, A.I. Kucharska, C.T. Foxon, and K. Griffiths, “Temperature dependence of spontaneous emission in GaAs-AlGaAs quantum well lasers,” Appl. Phys. Lett.,  55, 1167–1169, (1989).
    [Crossref]
  3. H.D. Summers, P. Mogensen, P. Rees, and P. Blood, “Recombination mechanisms and optical losses in strained layer, (AlyGa1-y)xIn1-xP lasers,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C.,1994) CThF4, p. 304.
  4. M.S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices”, J. Appl. Phys.,  78, 607–639, (1995).
    [Crossref]
  5. F. Yang, P. Blood, and J.S. Roberts, “Edge-emitting quantum well laser with Bragg reflectors,” Appl. Phys. Lett.,  66, 2949–2951, (1995).
    [Crossref]
  6. R.E. Collins, Field theory of guided waves, (IEEE Press, Washington, DC,1991).
  7. P. Rees, R.A.H. Hamilton, P. Blood, and S.V. Burke, “Carrier-carrier scattering effects in InGaAs-GaAs”, IEE Proc.-J: Optoelectron. 140, 81–84, (1993).
    [Crossref]

1995 (2)

M.S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices”, J. Appl. Phys.,  78, 607–639, (1995).
[Crossref]

F. Yang, P. Blood, and J.S. Roberts, “Edge-emitting quantum well laser with Bragg reflectors,” Appl. Phys. Lett.,  66, 2949–2951, (1995).
[Crossref]

1993 (1)

P. Rees, R.A.H. Hamilton, P. Blood, and S.V. Burke, “Carrier-carrier scattering effects in InGaAs-GaAs”, IEE Proc.-J: Optoelectron. 140, 81–84, (1993).
[Crossref]

1989 (1)

P. Blood, A.I. Kucharska, C.T. Foxon, and K. Griffiths, “Temperature dependence of spontaneous emission in GaAs-AlGaAs quantum well lasers,” Appl. Phys. Lett.,  55, 1167–1169, (1989).
[Crossref]

Blood, P.

F. Yang, P. Blood, and J.S. Roberts, “Edge-emitting quantum well laser with Bragg reflectors,” Appl. Phys. Lett.,  66, 2949–2951, (1995).
[Crossref]

P. Rees, R.A.H. Hamilton, P. Blood, and S.V. Burke, “Carrier-carrier scattering effects in InGaAs-GaAs”, IEE Proc.-J: Optoelectron. 140, 81–84, (1993).
[Crossref]

P. Blood, A.I. Kucharska, C.T. Foxon, and K. Griffiths, “Temperature dependence of spontaneous emission in GaAs-AlGaAs quantum well lasers,” Appl. Phys. Lett.,  55, 1167–1169, (1989).
[Crossref]

H.D. Summers, P. Mogensen, P. Rees, and P. Blood, “Recombination mechanisms and optical losses in strained layer, (AlyGa1-y)xIn1-xP lasers,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C.,1994) CThF4, p. 304.

Burke, S.V.

P. Rees, R.A.H. Hamilton, P. Blood, and S.V. Burke, “Carrier-carrier scattering effects in InGaAs-GaAs”, IEE Proc.-J: Optoelectron. 140, 81–84, (1993).
[Crossref]

Coldren, L.A.

L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, New York,1995).

Collins, R.E.

R.E. Collins, Field theory of guided waves, (IEEE Press, Washington, DC,1991).

Corzine, S.W.

L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, New York,1995).

Foxon, C.T.

P. Blood, A.I. Kucharska, C.T. Foxon, and K. Griffiths, “Temperature dependence of spontaneous emission in GaAs-AlGaAs quantum well lasers,” Appl. Phys. Lett.,  55, 1167–1169, (1989).
[Crossref]

Griffiths, K.

P. Blood, A.I. Kucharska, C.T. Foxon, and K. Griffiths, “Temperature dependence of spontaneous emission in GaAs-AlGaAs quantum well lasers,” Appl. Phys. Lett.,  55, 1167–1169, (1989).
[Crossref]

Hamilton, R.A.H.

P. Rees, R.A.H. Hamilton, P. Blood, and S.V. Burke, “Carrier-carrier scattering effects in InGaAs-GaAs”, IEE Proc.-J: Optoelectron. 140, 81–84, (1993).
[Crossref]

Kucharska, A.I.

P. Blood, A.I. Kucharska, C.T. Foxon, and K. Griffiths, “Temperature dependence of spontaneous emission in GaAs-AlGaAs quantum well lasers,” Appl. Phys. Lett.,  55, 1167–1169, (1989).
[Crossref]

Mogensen, P.

H.D. Summers, P. Mogensen, P. Rees, and P. Blood, “Recombination mechanisms and optical losses in strained layer, (AlyGa1-y)xIn1-xP lasers,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C.,1994) CThF4, p. 304.

Rees, P.

P. Rees, R.A.H. Hamilton, P. Blood, and S.V. Burke, “Carrier-carrier scattering effects in InGaAs-GaAs”, IEE Proc.-J: Optoelectron. 140, 81–84, (1993).
[Crossref]

H.D. Summers, P. Mogensen, P. Rees, and P. Blood, “Recombination mechanisms and optical losses in strained layer, (AlyGa1-y)xIn1-xP lasers,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C.,1994) CThF4, p. 304.

Roberts, J.S.

F. Yang, P. Blood, and J.S. Roberts, “Edge-emitting quantum well laser with Bragg reflectors,” Appl. Phys. Lett.,  66, 2949–2951, (1995).
[Crossref]

Strite, S.

M.S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices”, J. Appl. Phys.,  78, 607–639, (1995).
[Crossref]

Summers, H.D.

H.D. Summers, P. Mogensen, P. Rees, and P. Blood, “Recombination mechanisms and optical losses in strained layer, (AlyGa1-y)xIn1-xP lasers,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C.,1994) CThF4, p. 304.

Ünlü, M.S.

M.S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices”, J. Appl. Phys.,  78, 607–639, (1995).
[Crossref]

Yang, F.

F. Yang, P. Blood, and J.S. Roberts, “Edge-emitting quantum well laser with Bragg reflectors,” Appl. Phys. Lett.,  66, 2949–2951, (1995).
[Crossref]

Appl. Phys. Lett. (2)

P. Blood, A.I. Kucharska, C.T. Foxon, and K. Griffiths, “Temperature dependence of spontaneous emission in GaAs-AlGaAs quantum well lasers,” Appl. Phys. Lett.,  55, 1167–1169, (1989).
[Crossref]

F. Yang, P. Blood, and J.S. Roberts, “Edge-emitting quantum well laser with Bragg reflectors,” Appl. Phys. Lett.,  66, 2949–2951, (1995).
[Crossref]

IEE Proc.-J: Optoelectron. (1)

P. Rees, R.A.H. Hamilton, P. Blood, and S.V. Burke, “Carrier-carrier scattering effects in InGaAs-GaAs”, IEE Proc.-J: Optoelectron. 140, 81–84, (1993).
[Crossref]

J. Appl. Phys. (1)

M.S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices”, J. Appl. Phys.,  78, 607–639, (1995).
[Crossref]

Other (3)

L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, New York,1995).

H.D. Summers, P. Mogensen, P. Rees, and P. Blood, “Recombination mechanisms and optical losses in strained layer, (AlyGa1-y)xIn1-xP lasers,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C.,1994) CThF4, p. 304.

R.E. Collins, Field theory of guided waves, (IEEE Press, Washington, DC,1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Spontaneous emission spectra from the micro-cavity lasers measured normal to the quantum well plane.

Fig. 2.
Fig. 2.

Measured threshold current density as a function of temperature for the micro-cavity lasers (full circles) and the control sample (open circles).

Fig. 3.
Fig. 3.

Calculated threshold current density as a function of temperature for the micro-cavity lasers (full circles) and the control sample (open circles).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R spon = k Σ [ ( M k e hh 2 Γ k ) ( N dip ) k + ( M k e lh 2 Γ k ) ( N dip ) k ]

Metrics