Abstract

While most previous studies of Hg-based mid-IR lasers have focused on either bulk Hg1-xCdxTe alloys or thick (> 100 Å) Hg1-xCdxTe quantum wells with relatively large x, we show that much thinner (20–30 Å) HgTe binary wells may be engineered to suppress both Auger recombination and intervalence free carrier absorption. On the basis of detailed numerical simulations, we predict 4.3 μm cw emission at temperatures up to 220 K for optical pumping and 105 K for diode operation. In pulsed mode, we expect maximum lasing temperatures more than 100 K higher than any prior Hg-based mid-IR result.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. Melngailis and A. J. Strauss, Appl. Phys. Lett. 8, 179 (1966).
  2. J. M. Arias, M. Zandian, R. Zucca, and J. Singh, Semicond. Sci. Technol. 8, S255 (1993).
    [CrossRef]
  3. J. Bleuse, N. Magnea, J.-L. Pautrat, and H. Mariette, Semicond. Sci. Technol. 8, S286 (1993).
    [CrossRef]
  4. A. Ravid, A. Sher, G. Cinader, and A. Zussman, J. Appl. Phys. 73, 7102 (1993).
    [CrossRef]
  5. A. Ravid, G. Cinader, and A. Zussman, J. Appl. Phys. 74, 15 (1993).
    [CrossRef]
  6. H.Q. Le, A. Sanchez, J.M. Arias, M. Zandian, R. R. Zucca, and Y.-Z.Liu, Inst. Phys. Conf. Ser. 144, 24 (1995).
  7. J. Bonnet-Gamard, J. Bleuse, N. Magnea, and J. L. Pautrat, J. Cryst. Growth 159, 613 (1996).
    [CrossRef]
  8. H. K. Choi, S. J. Eglash, and G. W. Turner, Appl. Phys. Lett. 64, 2474 (1994).
    [CrossRef]
  9. C. L. Felix, J. R. Meyer, I. Vurgaftman, C.-H. Lin, S. J. Murry, D. Zhang, and S.-S. Pei, IEEE Photonics Technol. Lett. 9, 734 (1997).
    [CrossRef]
  10. J. Singh and R. Zucca, J. Appl. Phys. 72, 2043 (1992).
    [CrossRef]
  11. M. E. Flatte, C. H. Grein, H. Ehrenreich, R. H. Miles, and H. Cruz, J. Appl. Phys. 78, 4552 (1995).
    [CrossRef]
  12. J. A. Mroczkowski and D. A. Nelson, J. Appl. Phys. 54, 2041 (1983).
    [CrossRef]
  13. V. C. Lopes, A. J. Syllaios, and M. C. Chen, Semicond. Sci. Technol. 8, 824 (1993).
    [CrossRef]
  14. J.I. Malin, C.L. Felix, J. R. Meyer, C. A.Hoffman, J.F.Pinto, C.-H.Lin, P. C.Chang, S. J. Murry, and S.-S. Pei, Electron. Lett. 32, 1593 (1996).
    [CrossRef]
  15. Z. Yang, Z. Yu, Y. Lansari, S. Hwang, J. W. Cook, Jr., and J. F. Schetzina, Phys. Rev. B 49, 8096 (1994).
    [CrossRef]
  16. J. B. Choi, K. H. Yoo, J. W. Han, T. W. Kang, J. R. Meyer, C. A. Hoffman, G. Karczewski, J. K. Furdyna, and J. P. Faurie, Phys. Rev. B 49, 11060 (1994).
    [CrossRef]
  17. M. von Truchsess, V. Latussek, F. Goschenhofer, C. R. Becker, G. Landwehr, E. Batke, R. Sizmann, and P. Helgesen, Phys. Rev. B 51, 17618 (1995).
    [CrossRef]
  18. H. P. Hjalmarson and S. R. Kurtz, Appl. Phys. Lett. 69, 949 (1996).
    [CrossRef]
  19. C. H. Grein, P. M. Young, and H. Ehrenreich, J. Appl. Phys. 76, 1940 (1994).
    [CrossRef]
  20. B. M. Vul, V. M. Sal'man, and V. A. Chapnin, Fiz. Tekh. Poluprovodn. 4, 67 (1970) [Sov. Phys. Semicond. 4, 52 (1970)].
  21. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, Appl. Phys. Lett. 67, 757 (1995).
    [CrossRef]
  22. I. Vurgaftman and J. R. Meyer, IEEE J. Sel. Topics Quantum. Electron. 3, 75 (1997).
    [CrossRef]
  23. J. L. Pautrat, E. Hadji, J. Bleuse, and N. Magnea, J. Electron. Mater. 26, 667 (1997).
    [CrossRef]

Other

I. Melngailis and A. J. Strauss, Appl. Phys. Lett. 8, 179 (1966).

J. M. Arias, M. Zandian, R. Zucca, and J. Singh, Semicond. Sci. Technol. 8, S255 (1993).
[CrossRef]

J. Bleuse, N. Magnea, J.-L. Pautrat, and H. Mariette, Semicond. Sci. Technol. 8, S286 (1993).
[CrossRef]

A. Ravid, A. Sher, G. Cinader, and A. Zussman, J. Appl. Phys. 73, 7102 (1993).
[CrossRef]

A. Ravid, G. Cinader, and A. Zussman, J. Appl. Phys. 74, 15 (1993).
[CrossRef]

H.Q. Le, A. Sanchez, J.M. Arias, M. Zandian, R. R. Zucca, and Y.-Z.Liu, Inst. Phys. Conf. Ser. 144, 24 (1995).

J. Bonnet-Gamard, J. Bleuse, N. Magnea, and J. L. Pautrat, J. Cryst. Growth 159, 613 (1996).
[CrossRef]

H. K. Choi, S. J. Eglash, and G. W. Turner, Appl. Phys. Lett. 64, 2474 (1994).
[CrossRef]

C. L. Felix, J. R. Meyer, I. Vurgaftman, C.-H. Lin, S. J. Murry, D. Zhang, and S.-S. Pei, IEEE Photonics Technol. Lett. 9, 734 (1997).
[CrossRef]

J. Singh and R. Zucca, J. Appl. Phys. 72, 2043 (1992).
[CrossRef]

M. E. Flatte, C. H. Grein, H. Ehrenreich, R. H. Miles, and H. Cruz, J. Appl. Phys. 78, 4552 (1995).
[CrossRef]

J. A. Mroczkowski and D. A. Nelson, J. Appl. Phys. 54, 2041 (1983).
[CrossRef]

V. C. Lopes, A. J. Syllaios, and M. C. Chen, Semicond. Sci. Technol. 8, 824 (1993).
[CrossRef]

J.I. Malin, C.L. Felix, J. R. Meyer, C. A.Hoffman, J.F.Pinto, C.-H.Lin, P. C.Chang, S. J. Murry, and S.-S. Pei, Electron. Lett. 32, 1593 (1996).
[CrossRef]

Z. Yang, Z. Yu, Y. Lansari, S. Hwang, J. W. Cook, Jr., and J. F. Schetzina, Phys. Rev. B 49, 8096 (1994).
[CrossRef]

J. B. Choi, K. H. Yoo, J. W. Han, T. W. Kang, J. R. Meyer, C. A. Hoffman, G. Karczewski, J. K. Furdyna, and J. P. Faurie, Phys. Rev. B 49, 11060 (1994).
[CrossRef]

M. von Truchsess, V. Latussek, F. Goschenhofer, C. R. Becker, G. Landwehr, E. Batke, R. Sizmann, and P. Helgesen, Phys. Rev. B 51, 17618 (1995).
[CrossRef]

H. P. Hjalmarson and S. R. Kurtz, Appl. Phys. Lett. 69, 949 (1996).
[CrossRef]

C. H. Grein, P. M. Young, and H. Ehrenreich, J. Appl. Phys. 76, 1940 (1994).
[CrossRef]

B. M. Vul, V. M. Sal'man, and V. A. Chapnin, Fiz. Tekh. Poluprovodn. 4, 67 (1970) [Sov. Phys. Semicond. 4, 52 (1970)].

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, Appl. Phys. Lett. 67, 757 (1995).
[CrossRef]

I. Vurgaftman and J. R. Meyer, IEEE J. Sel. Topics Quantum. Electron. 3, 75 (1997).
[CrossRef]

J. L. Pautrat, E. Hadji, J. Bleuse, and N. Magnea, J. Electron. Mater. 26, 667 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

In-plane bandstructure at 77 K for a MQW consisting of 150 Å Hg0.65Cd0.35Te wells and 100 Å Hg0.15Cd0.85Te barriers grown along the (100) direction.

Fig. 2.
Fig. 2.

In-plane bandstructure at 150 K for a MQW consisting of 24 Å-thick HgTe wells and 60 Å Hg0.1Cd0.9Te barriers grown along the (211) direction. The dashed line shows the heavy-hole dispersion for a bulk HgCdTe alloy with the same bandgap.

Fig. 3.
Fig. 3.

Calculated cw (solid) and pulsed (dashed curves) output power per facet for an optically pumped bulk Hg0.7Cd0.3Te alloy emitting at 4.3 μm as a function of pump intensity at several representative temperatures. The cavity length of 1 mm and the stripe width of 200 μm are the same in Fig. 3–6.

Fig. 4.
Fig. 4.

Calculated cw (solid curves) and pulsed (dashed curves) output power per facet for an optically pumped quantum-well structure of Fig. 2 emitting at 4.3 μm as a function of pump intensity at several representative temperatures.

Fig. 5.
Fig. 5.

Calculated pulsed output power per facet for an electrically pumped quantum-well structure (Fig. 2) emitting at 4.3 μm as a function of injected current density at several temperatures.

Fig. 6.
Fig. 6.

Calculated cw output power per facet for an electrically pumped quantum-well structure (Fig. 2) emitting at 4.3 μm as a function of injected current density at several temperatures.

Metrics