Abstract

We present new results on photon number squeezing of spectrally filtered solitons in fibers. The impact of frequency low-, high-, and bandpass filtering on noise reduction has been measured as a function of fiber length for 130-fs pulses close to the soliton energy. For short fibers our results agree qualitatively with theoretical predictions. For longer fibers, however, the measured squeezing increases to an unexpectedly large value. Spectral filtering of a strongly Raman-shifted, higher energy pulse squeezed the directly detected photocurrent fluctuations down to 3.8±0.2 dB (59%) below the shot noise level. The measured noise reductions are broadband from 5 to 90 MHz.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
    [CrossRef] [PubMed]
  2. M. Rosenbluh and R. M. Shelby, "Squeezed optical solitons," Phys. Rev. Lett. 66, 153-156 (1991).
    [CrossRef] [PubMed]
  3. K. Bergman and H. A. Haus, "Squeezing in fibers with optical pulses," Opt. Lett. 16, 663-665 (1991).
    [CrossRef] [PubMed]
  4. K. Bergman, C. R. Doerr, H. A. Haus, and M. Shirasaki, "Sub-shot-noise measurement with fiber squeezed optical pulses," Opt. Lett. 18, 643-645 (1993).
    [CrossRef] [PubMed]
  5. K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, "Squeezing in a fiber interferometer with a gigahertz pump," Opt. Lett. 19, 290-292 (1994).
    [CrossRef] [PubMed]
  6. N. Nishizawa, S. Kume, M. Mori, T. Goto, and A. Miyauchi, "Squeezed light generation with 1.064 m Nd:YAG laser and 0.85 m single-mode fiber," Jpn. J. Appl. Phys., Part 1 33, 138-143 (1994).
    [CrossRef]
  7. S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, "Photon number squeezing of spectrally filtered solitons," Phys. Rev. Lett. 77, 3775-3778 (1996).
    [CrossRef] [PubMed]
  8. S. Spaelter, M. Burk, U. Stroessner, M. Boehm, A. Sizmann, and G. Leuchs, "Photon number squeezing of spectrally filtered sub-picosecond optical solitons," Europhys. Lett. 38, 335-340 (1997).
    [CrossRef]
  9. M. J. Werner, "Quantum statistics of fundamental and higher-order coherent quantum solitons in Raman-active waveguides," Phys. Rev. A 54, 2567R-2570R (1996).
    [CrossRef]
  10. M.J. Werner and S.R. Friberg, "Phase transitions and the internal noise structure of nonlinear Schroedinger equation solitons," Phys. Rev. Lett. 79, 4143-4146 (1997).
    [CrossRef]
  11. A. Mecozzi and P. Kumar, "Linearized quantum-fluctuation theory of spectrally-filtered optical solitons," Opt. Lett. 22, 1232-1234 (1997).
    [CrossRef] [PubMed]
  12. S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, G. Leuchs, "Self-starting soliton modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
    [CrossRef]
  13. G. P. Agrawal, in Nonlinear fiber optics, (Academic Press, San Diego, 1995).
  14. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
    [CrossRef]
  15. F. M. Mitschke and L.F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]

Other

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-band parametric deamplification of quantum noise in an optical fiber," Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

M. Rosenbluh and R. M. Shelby, "Squeezed optical solitons," Phys. Rev. Lett. 66, 153-156 (1991).
[CrossRef] [PubMed]

K. Bergman and H. A. Haus, "Squeezing in fibers with optical pulses," Opt. Lett. 16, 663-665 (1991).
[CrossRef] [PubMed]

K. Bergman, C. R. Doerr, H. A. Haus, and M. Shirasaki, "Sub-shot-noise measurement with fiber squeezed optical pulses," Opt. Lett. 18, 643-645 (1993).
[CrossRef] [PubMed]

K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, "Squeezing in a fiber interferometer with a gigahertz pump," Opt. Lett. 19, 290-292 (1994).
[CrossRef] [PubMed]

N. Nishizawa, S. Kume, M. Mori, T. Goto, and A. Miyauchi, "Squeezed light generation with 1.064 m Nd:YAG laser and 0.85 m single-mode fiber," Jpn. J. Appl. Phys., Part 1 33, 138-143 (1994).
[CrossRef]

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, "Photon number squeezing of spectrally filtered solitons," Phys. Rev. Lett. 77, 3775-3778 (1996).
[CrossRef] [PubMed]

S. Spaelter, M. Burk, U. Stroessner, M. Boehm, A. Sizmann, and G. Leuchs, "Photon number squeezing of spectrally filtered sub-picosecond optical solitons," Europhys. Lett. 38, 335-340 (1997).
[CrossRef]

M. J. Werner, "Quantum statistics of fundamental and higher-order coherent quantum solitons in Raman-active waveguides," Phys. Rev. A 54, 2567R-2570R (1996).
[CrossRef]

M.J. Werner and S.R. Friberg, "Phase transitions and the internal noise structure of nonlinear Schroedinger equation solitons," Phys. Rev. Lett. 79, 4143-4146 (1997).
[CrossRef]

A. Mecozzi and P. Kumar, "Linearized quantum-fluctuation theory of spectrally-filtered optical solitons," Opt. Lett. 22, 1232-1234 (1997).
[CrossRef] [PubMed]

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I. D. Jung, G. Zhang, U. Keller, A. Sizmann, G. Leuchs, "Self-starting soliton modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

G. P. Agrawal, in Nonlinear fiber optics, (Academic Press, San Diego, 1995).

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

F. M. Mitschke and L.F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup for the detection of sub-shot noise spectrally filtered solitons.

Fig. 2.
Fig. 2.

Noise levels (relative to shot noise) in low- and high-pass filtering for different cut-off wavelengths. The fiber length for the data plotted here was fixed at 2.9 m (a) and 90 m (b). For comparison, input and output pulse spectra are shown.

Fig. 3.
Fig. 3.

Photon number squeezing by low-, high-, and band-pass filtering for different fiber lengths.

Fig. 4.
Fig. 4.

Broadband noise reduction. Fiber length, pulse energy, and pulse width were at 3 m, 128 pJ, and 140 fs respectively. Input and output spectra as well as filter position are shown in the insert.

Metrics