Abstract

A novel method of producing squeezed vacuum uses cross phase modulation between a linearly polarized pump signal and the orthogonal polarized vacuum. Here we report on such cross phase modulation using 1-nJ 150-fs pulses from a low noise stretched pulse laser. The nonlinear medium was a single mode fiber and the noise reduction was 3 dB.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. P. Yuen and J. Shapiro, Generation and detection of two photon coherent states in degenerate four wave mixing , Opt. Lett. 4, 334-336 (1979).
    [CrossRef] [PubMed]
  2. B. Yurke, Squeezed state generation via four wave mixing and detection via homodyne detectors, Phs. Rev. A. 32, 300-310 (1985).
    [CrossRef]
  3. M. Rosenbluh and R. M. Shelby, Squeezed optical solitons, Phys. Rev. Lett. 66, 153-156 (1991).
    [CrossRef] [PubMed]
  4. K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, Squeezing in a fiber interferometer with a gigahertz pump, Opt. Lett. 19, 290-292 (1994).
    [CrossRef] [PubMed]
  5. P. D. Drummond and S. J. Carter, Quantum-field theory of squeezing in solitons, J. Opt. Soc. Am. B. 4, 1565-1573 (1987).
    [CrossRef]
  6. H. A. Haus and Y. Lai, "Quantum theory of soliton squeezing-a linearized approach," J. Opt. Soc. Am. B 7, 386-392 (1990).
    [CrossRef]
  7. L. Boivin, C.R. Doerr, K. Bergman, and H. A. Haus Quantum Noise Reduction Using a Nonlinear Sagnac Loop with Positive Dispersion in Proceedings on Quantum Communications and Measurement (Plenum Press, New York 1995), p. 487.
  8. F. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, "Observation of optical soliton photon-number squeezing," Phys. Rev. Lett. 77, 7, 3775-3778 (1996).
    [CrossRef] [PubMed]
  9. A. M. Fox, M. Dabbicco, G. von Plessen, and J. F. Ryan, Quadrature squeezed light generation by cross-phase modulation in semiconductors, Opt. Lett. 20, 2523-2525 (1995).
    [CrossRef] [PubMed]
  10. M. K. Udo, X. Zhang, and H. Seng-Tiong, Theoretical and experimental investigations of squeezed-state generation in chi(3) semiconductor waveguides, in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p203-204.
  11. L. Boivin and H. A. Haus, "chi(3) squeezed vacuum generation without a Sagnac loop interferometer," Opt. Lett. 21, 146-148 (1996).
    [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995) . p. 147.
  13. K. Bergman, H. A. Haus, and M. Shirasaki, "Analysis and measurement of GAWBS spectrum in a nonlinear fiber ring," App. Phys. B. 55, 242-249 (1992).
    [CrossRef]
  14. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched pulse additive pulse modelocking in fiber ring lasers: Theory and experiment," J. Quantum Electron. 31, 591-598 (1995).
    [CrossRef]

Other

H. P. Yuen and J. Shapiro, Generation and detection of two photon coherent states in degenerate four wave mixing , Opt. Lett. 4, 334-336 (1979).
[CrossRef] [PubMed]

B. Yurke, Squeezed state generation via four wave mixing and detection via homodyne detectors, Phs. Rev. A. 32, 300-310 (1985).
[CrossRef]

M. Rosenbluh and R. M. Shelby, Squeezed optical solitons, Phys. Rev. Lett. 66, 153-156 (1991).
[CrossRef] [PubMed]

K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, Squeezing in a fiber interferometer with a gigahertz pump, Opt. Lett. 19, 290-292 (1994).
[CrossRef] [PubMed]

P. D. Drummond and S. J. Carter, Quantum-field theory of squeezing in solitons, J. Opt. Soc. Am. B. 4, 1565-1573 (1987).
[CrossRef]

H. A. Haus and Y. Lai, "Quantum theory of soliton squeezing-a linearized approach," J. Opt. Soc. Am. B 7, 386-392 (1990).
[CrossRef]

L. Boivin, C.R. Doerr, K. Bergman, and H. A. Haus Quantum Noise Reduction Using a Nonlinear Sagnac Loop with Positive Dispersion in Proceedings on Quantum Communications and Measurement (Plenum Press, New York 1995), p. 487.

F. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, "Observation of optical soliton photon-number squeezing," Phys. Rev. Lett. 77, 7, 3775-3778 (1996).
[CrossRef] [PubMed]

A. M. Fox, M. Dabbicco, G. von Plessen, and J. F. Ryan, Quadrature squeezed light generation by cross-phase modulation in semiconductors, Opt. Lett. 20, 2523-2525 (1995).
[CrossRef] [PubMed]

M. K. Udo, X. Zhang, and H. Seng-Tiong, Theoretical and experimental investigations of squeezed-state generation in chi(3) semiconductor waveguides, in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p203-204.

L. Boivin and H. A. Haus, "chi(3) squeezed vacuum generation without a Sagnac loop interferometer," Opt. Lett. 21, 146-148 (1996).
[CrossRef] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995) . p. 147.

K. Bergman, H. A. Haus, and M. Shirasaki, "Analysis and measurement of GAWBS spectrum in a nonlinear fiber ring," App. Phys. B. 55, 242-249 (1992).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched pulse additive pulse modelocking in fiber ring lasers: Theory and experiment," J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic description of cross phase modulation squeezing.

Fig. 2.
Fig. 2.

Experimental setup, (PBS-polarization beam splitter, BS-beam splitter)

Fig. 3.
Fig. 3.

Spectrum of pulses after single mode fiber, with output power of 35mW. (dashed line is the spectrum of the laser).

Fig. 4.
Fig. 4.

Auto-correlation of pulses after single mode fiber with output power of 35 mW. (dotted line is fitted to hyperbolic secant).

Fig. 5.
Fig. 5.

RF spectrum of homodyne detector. Shot noise is obtained by blocking vacuum port.

Fig. 6.
Fig. 6.

Dependence of noise on the relative local oscillator phase.

Metrics