Abstract

The problem of Interference Stabilization of Rydberg atoms is considered. Two kinds of Raman-type transitions can be responsible for the effect: Λ-type transitions via the continuum and V-type transitions via lower resonant atomic levels. The main distinctions between Λ- and V-stabilization are described. The conditions under which each of these two effects can exist are found and discussed.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M.V. Fedorov and A.M. Movsesian, J. Phys. B 21, L155 (1988).
    [CrossRef]
  2. M.V. Fedorov, Com. At. Mol. Phys. 27, 203 (1992).
  3. L. Roso-Franco, G. Orriols, and J.H. Eberly, Laser Phys. 2, 741 (1992).
  4. L.D. Noordam, H. Stapelfeldt, and D.I. Duncan, Phys. Rev. Lett. 68, 1496 (1992).
    [CrossRef] [PubMed]
  5. A. Wojcik and R. Parzinski, Phys. Rev. A 50, 2475 (1994).
    [CrossRef] [PubMed]
  6. M. Yu. Ivanov, Phys. Rev. A 49, 1165 (1994).
    [CrossRef]
  7. J.H. Hoogenraad, R.B. Vrijen, and L.D. Noordam, Phys. Rev. A 50, 4133 (1994).
    [CrossRef] [PubMed]
  8. A. Wojcik and R. Parzinski, J. Opt. Soc. Am. B 12, 3, 369 (1995).
    [CrossRef]
  9. R.B. Vrijen, J.H. Hoogenraad, and L.D. Noordam Phys. Rev. A 52, 2279 (1995).
    [CrossRef] [PubMed]
  10. M.V. Fedorov and N.P. Poluektov, Laser Phys. 7, 299 (1997).
  11. I. Ya. Bersons, JETP 53, 891 (1981).
  12. N.B. Delone, S.P. Goreslavsky, and V.P. Krainov, J. Phys. B. 22, 2941 (1989).
    [CrossRef]
  13. M.S. Adams, M.V. Fedorov, V.P. Krainov, and D.D. Meyerhofer, Phys. Rev. A 52, 125 (1995).
    [CrossRef] [PubMed]
  14. Ya.B. Zeldovich, JETP 24, 1006 (1967).
  15. V.I. Ritus, JETP 24, 1041 (1967).

Other

M.V. Fedorov and A.M. Movsesian, J. Phys. B 21, L155 (1988).
[CrossRef]

M.V. Fedorov, Com. At. Mol. Phys. 27, 203 (1992).

L. Roso-Franco, G. Orriols, and J.H. Eberly, Laser Phys. 2, 741 (1992).

L.D. Noordam, H. Stapelfeldt, and D.I. Duncan, Phys. Rev. Lett. 68, 1496 (1992).
[CrossRef] [PubMed]

A. Wojcik and R. Parzinski, Phys. Rev. A 50, 2475 (1994).
[CrossRef] [PubMed]

M. Yu. Ivanov, Phys. Rev. A 49, 1165 (1994).
[CrossRef]

J.H. Hoogenraad, R.B. Vrijen, and L.D. Noordam, Phys. Rev. A 50, 4133 (1994).
[CrossRef] [PubMed]

A. Wojcik and R. Parzinski, J. Opt. Soc. Am. B 12, 3, 369 (1995).
[CrossRef]

R.B. Vrijen, J.H. Hoogenraad, and L.D. Noordam Phys. Rev. A 52, 2279 (1995).
[CrossRef] [PubMed]

M.V. Fedorov and N.P. Poluektov, Laser Phys. 7, 299 (1997).

I. Ya. Bersons, JETP 53, 891 (1981).

N.B. Delone, S.P. Goreslavsky, and V.P. Krainov, J. Phys. B. 22, 2941 (1989).
[CrossRef]

M.S. Adams, M.V. Fedorov, V.P. Krainov, and D.D. Meyerhofer, Phys. Rev. A 52, 125 (1995).
[CrossRef] [PubMed]

Ya.B. Zeldovich, JETP 24, 1006 (1967).

V.I. Ritus, JETP 24, 1041 (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The general scheme of Λ- and V-type transitions taken into account in the model under consideration.

Fig. 2.
Fig. 2.

The Rabi frequency Ω R and the ionization width Γ vs. the field strength parameter V = ε/ω5/3; ∆ is the gap between the adjacent Rydberg levels (3).

Fig. 3.
Fig. 3.

The ionization yield vs. the field strength parameter V calculated in the models with Ω R = 0 (a) and Ω R ≠ 0 (b).

Fig.4.
Fig.4.

The ionization yield vs. detuning δ calculated for 4 different values of the field strength parameter V.

Fig. 5.
Fig. 5.

The ionization yield vs. the field strength parameter V calculated for 3 different pulse durations.

Fig.6.
Fig.6.

The ionization yield vs. the field strength parameter V calculated for different pulse profiles.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Ω R = V n 0 , n ˜ 0 2 and Γ = 2 π V n 0 , E 2 2 | E E n + ω
Ω R ε ( n 0 n ˜ 0 ) 3 / 2 ω 5 / 3 , Γ ε 2 n 0 3 ω 10 / 3 .
δ = E n ˜ 0 + ω E n 0 , Δ = E n + 1 E n 1 n 0 3 .
n 0 n ˜ 0 1 .
E n ω E g .
Γ ( ε ) = Ω R ( ε ) .
Ω R ( ε ) = Δ and Γ ( ε ) = Δ ,
ε 1 = ( n ˜ 0 n 0 ) 3 / 2 ω 5 / 3 , ε 2 = ω 5 / 3 , ε 3 = ( n ˜ 0 n 0 ) 3 / 2 ω 5 / 3 ;
V 1 = ( n ˜ 0 n 0 ) 3 / 2 , V 2 = 1 , V 3 = ( n ˜ 0 n 0 ) 3 / 2 .
ε 1 = 7 × 10 5 V / cm , ε 2 = 8 × 10 6 V / cm , ε 3 = 9 × 10 7 V / cm .
i a n ˜ ( t ) = ( E n ˜ + ω ) a n ˜ ( t ) + Ω R n a n ( t )
i a n ( t ) = E n a n ( t ) + Ω R n ˜ a n ˜ ( t ) i Γ 2 m a m ( t ) .
P ion = 1 < ψ bound | ψ bound >
δ Δ ˜ ,
P ion = Ω R 2 + ( Δ 2 ) 2 2 Ω R 2 + ( Δ 2 ) 2 [ 1 exp ( Γ t ) ] .
Γ t > 1 at ε ε 1 .
t > ( n 0 n ˜ 0 ) 3 n 0 3 ( n 0 n ˜ 0 ) 3 T k ,

Metrics