Abstract

The spatiotemporal dynamics of linearly and trumpet flared high brightness semiconductor lasers are compared and contrasted using a comprehensive model built up from the microscopic physics. While both devices display complex multi longitudinal mode dynamics, the trumpet flared device is less susceptible to transverse filamentation instabilities and, hence, displays superior time-averaged far-field imaging properties.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996).
    [Crossref]
  2. J. N. Walpole, E. S. Kintzner, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High power strained-layer InGaAs/AlGa/As tapered traveling wave amplifier,” Appl. Phys. Lett. 61, 740–742 (1992).
    [Crossref]
  3. D. F. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, and S. O’Brien, “1.1W CW diffraction-limited operation o a monolithically flared amplifier master oscillator power amplifier,” Electron. Lett. 28, 2011–2013 (1992).
    [Crossref]
  4. D. Mehuys, S. O’Brien, R. J. Lang, A. Hardy, and D. F. Welch, “5W diffraction-limited, tapered stripe unstable resonator semiconductor laser,” Electron. Lett. 30, 1855–1856 (1994).
    [Crossref]
  5. P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet-shaped flare,” IEEE Photonics Technol. Lett. 9, 1220–1222 (1997).
    [Crossref]
  6. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
    [Crossref]
  7. J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space-time simulation of high brightness semiconductor lasers,” IEEE Photonics Technol. Lett. 9, 731–733 (1997).
    [Crossref]
  8. J. A. Fleck, “Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B. 184–100 (1970).
    [Crossref]

1997 (3)

P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet-shaped flare,” IEEE Photonics Technol. Lett. 9, 1220–1222 (1997).
[Crossref]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space-time simulation of high brightness semiconductor lasers,” IEEE Photonics Technol. Lett. 9, 731–733 (1997).
[Crossref]

1996 (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996).
[Crossref]

1994 (1)

D. Mehuys, S. O’Brien, R. J. Lang, A. Hardy, and D. F. Welch, “5W diffraction-limited, tapered stripe unstable resonator semiconductor laser,” Electron. Lett. 30, 1855–1856 (1994).
[Crossref]

1992 (2)

J. N. Walpole, E. S. Kintzner, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High power strained-layer InGaAs/AlGa/As tapered traveling wave amplifier,” Appl. Phys. Lett. 61, 740–742 (1992).
[Crossref]

D. F. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, and S. O’Brien, “1.1W CW diffraction-limited operation o a monolithically flared amplifier master oscillator power amplifier,” Electron. Lett. 28, 2011–2013 (1992).
[Crossref]

1970 (1)

J. A. Fleck, “Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B. 184–100 (1970).
[Crossref]

Chinn, S. R.

J. N. Walpole, E. S. Kintzner, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High power strained-layer InGaAs/AlGa/As tapered traveling wave amplifier,” Appl. Phys. Lett. 61, 740–742 (1992).
[Crossref]

Fleck, J. A.

J. A. Fleck, “Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B. 184–100 (1970).
[Crossref]

Hardy, A.

D. Mehuys, S. O’Brien, R. J. Lang, A. Hardy, and D. F. Welch, “5W diffraction-limited, tapered stripe unstable resonator semiconductor laser,” Electron. Lett. 30, 1855–1856 (1994).
[Crossref]

D. F. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, and S. O’Brien, “1.1W CW diffraction-limited operation o a monolithically flared amplifier master oscillator power amplifier,” Electron. Lett. 28, 2011–2013 (1992).
[Crossref]

Indik, R. A.

P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet-shaped flare,” IEEE Photonics Technol. Lett. 9, 1220–1222 (1997).
[Crossref]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space-time simulation of high brightness semiconductor lasers,” IEEE Photonics Technol. Lett. 9, 731–733 (1997).
[Crossref]

Kintzner, E. S.

J. N. Walpole, E. S. Kintzner, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High power strained-layer InGaAs/AlGa/As tapered traveling wave amplifier,” Appl. Phys. Lett. 61, 740–742 (1992).
[Crossref]

Lang, R.

D. F. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, and S. O’Brien, “1.1W CW diffraction-limited operation o a monolithically flared amplifier master oscillator power amplifier,” Electron. Lett. 28, 2011–2013 (1992).
[Crossref]

Lang, R. J.

D. Mehuys, S. O’Brien, R. J. Lang, A. Hardy, and D. F. Welch, “5W diffraction-limited, tapered stripe unstable resonator semiconductor laser,” Electron. Lett. 30, 1855–1856 (1994).
[Crossref]

McInerney, J. G.

P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet-shaped flare,” IEEE Photonics Technol. Lett. 9, 1220–1222 (1997).
[Crossref]

Mehuys, D.

D. Mehuys, S. O’Brien, R. J. Lang, A. Hardy, and D. F. Welch, “5W diffraction-limited, tapered stripe unstable resonator semiconductor laser,” Electron. Lett. 30, 1855–1856 (1994).
[Crossref]

D. F. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, and S. O’Brien, “1.1W CW diffraction-limited operation o a monolithically flared amplifier master oscillator power amplifier,” Electron. Lett. 28, 2011–2013 (1992).
[Crossref]

Missaggia, L. J.

J. N. Walpole, E. S. Kintzner, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High power strained-layer InGaAs/AlGa/As tapered traveling wave amplifier,” Appl. Phys. Lett. 61, 740–742 (1992).
[Crossref]

Moloney, J. V.

P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet-shaped flare,” IEEE Photonics Technol. Lett. 9, 1220–1222 (1997).
[Crossref]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space-time simulation of high brightness semiconductor lasers,” IEEE Photonics Technol. Lett. 9, 731–733 (1997).
[Crossref]

Ning, C. Z.

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space-time simulation of high brightness semiconductor lasers,” IEEE Photonics Technol. Lett. 9, 731–733 (1997).
[Crossref]

P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet-shaped flare,” IEEE Photonics Technol. Lett. 9, 1220–1222 (1997).
[Crossref]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

O’Brien, S.

D. Mehuys, S. O’Brien, R. J. Lang, A. Hardy, and D. F. Welch, “5W diffraction-limited, tapered stripe unstable resonator semiconductor laser,” Electron. Lett. 30, 1855–1856 (1994).
[Crossref]

D. F. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, and S. O’Brien, “1.1W CW diffraction-limited operation o a monolithically flared amplifier master oscillator power amplifier,” Electron. Lett. 28, 2011–2013 (1992).
[Crossref]

Parke, R.

D. F. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, and S. O’Brien, “1.1W CW diffraction-limited operation o a monolithically flared amplifier master oscillator power amplifier,” Electron. Lett. 28, 2011–2013 (1992).
[Crossref]

Skovgaard, P. M. W.

P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet-shaped flare,” IEEE Photonics Technol. Lett. 9, 1220–1222 (1997).
[Crossref]

Walpole, J. N.

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996).
[Crossref]

J. N. Walpole, E. S. Kintzner, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High power strained-layer InGaAs/AlGa/As tapered traveling wave amplifier,” Appl. Phys. Lett. 61, 740–742 (1992).
[Crossref]

Wang, C. A.

J. N. Walpole, E. S. Kintzner, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High power strained-layer InGaAs/AlGa/As tapered traveling wave amplifier,” Appl. Phys. Lett. 61, 740–742 (1992).
[Crossref]

Welch, D. F.

D. Mehuys, S. O’Brien, R. J. Lang, A. Hardy, and D. F. Welch, “5W diffraction-limited, tapered stripe unstable resonator semiconductor laser,” Electron. Lett. 30, 1855–1856 (1994).
[Crossref]

D. F. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, and S. O’Brien, “1.1W CW diffraction-limited operation o a monolithically flared amplifier master oscillator power amplifier,” Electron. Lett. 28, 2011–2013 (1992).
[Crossref]

Appl. Phys. Lett. (1)

J. N. Walpole, E. S. Kintzner, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High power strained-layer InGaAs/AlGa/As tapered traveling wave amplifier,” Appl. Phys. Lett. 61, 740–742 (1992).
[Crossref]

Electron. Lett. (2)

D. F. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, and S. O’Brien, “1.1W CW diffraction-limited operation o a monolithically flared amplifier master oscillator power amplifier,” Electron. Lett. 28, 2011–2013 (1992).
[Crossref]

D. Mehuys, S. O’Brien, R. J. Lang, A. Hardy, and D. F. Welch, “5W diffraction-limited, tapered stripe unstable resonator semiconductor laser,” Electron. Lett. 30, 1855–1856 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space-time simulation of high brightness semiconductor lasers,” IEEE Photonics Technol. Lett. 9, 731–733 (1997).
[Crossref]

P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet-shaped flare,” IEEE Photonics Technol. Lett. 9, 1220–1222 (1997).
[Crossref]

Opt. Quantum Electron. (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996).
[Crossref]

Phys. Rev. B. (1)

J. A. Fleck, “Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B. 184–100 (1970).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1.
Figure 1.

Shaded surface contrast of the linear and nonlinear (trumpet) flare current pump profiles.

Figure 2.
Figure 2.

The near field intensity of both nonlinear (left) and linear (right) flares for pump currents of 1A, 2A, 3A, 4A and 5A time averaged over a period of 2ns. The nonlinear flare has the same shape at any instant in time whereas in the linear flare, at 3A and beyond (dashed lines), the transverse profile begins to evolve significantly (even the 2ns time average evolves). At 4A and 5A the nonlinear flare output is slightly asymmetric, whether it emits more strongly on the left or the right depends on initial condition.

Figure 3.
Figure 3.

The corrected far field intensity of both nonlinear (left) and linear (right) flares for pump currents of 1A, 2A, 3A, 4A and 5A time averaged over a period of 2ns. The nonlinear flare far field remains well collimated with less than 0.5° of divergence up to 4A whereas the linear flare beam quality degrades rapidly as the power increases. The far fields are calculated using a fixed focal length lens: 0.48mm for the nonlinear flare and 0.8mm for the linear flare.

Figure 4.
Figure 4.

An instantaneous comparison of the carrier density (top) and backward field intensity (bottom) distributions for a nonlinear (left) and linear (right) flare laser. Dark shading signifies high and light shading, low values. The contours in the density plots correspond to Nth and 0.1Nth, where Nth is the threshold carrier density. The backward field contours correspond to 90% of maximum and half-maximum.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F t + υ F z = i D r 2 F x 2 F + κ [ P F + i a 4 ( N ) F ]
B t + υ B z = i D r 2 B x 2 B + κ [ P B + i a 4 ( N ) B ]
P F t = ( 1 + i δ ) P F + a 1 ( N ) F
P B t = ( 1 + i δ ) P B + a 1 ( N ) B
N t = γ ( N J ) + D u 2 N x 2 1 2 ( F P F * + F * P F + B P B * B * P B )
F x 0 t = R L B x 0 t
B x L t = R R F x L t

Metrics