Abstract

A nonlinear AlxGa1-xAs waveguide consisting of a quasi-phase matched heterostructure embedded in a microcavity has been designed and fabricated. The microcavity resonator is formed by Al2O3/Al0.32Ga0.68As multilayer mirrors located above and below the waveguide core. The cavity resonantly enhances the surface emitting second-harmonic generation. The SH conversion efficiency has been measured for wavelengths between λ = 1525 and 1575 nm. A simple waveguide loss measurement technique based on the SH autocorrelation of short optical pulses in a III–V waveguide is also demonstrated.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Normandin and G.I. Stegeman, "Nondegenerate four-wave mixing in integrated optics," Opt. Lett. 4, 58-59 (1979).
    [CrossRef] [PubMed]
  2. R. Normandin and G.I. Stegeman, "Picosecond signal processing with planar, nonlinear integrated optics," Appl. Phys. Lett. 36, 253-255 (1980).
    [CrossRef]
  3. R. Normandin and G.I. Stegeman, "A picosecond transient digitizer based on nonlinear integrated optics," Appl. Phys. Lett. 40, 759-761 (1982).
    [CrossRef]
  4. D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J.S. Smith, "Integrable parametric waveguide spectrometer - a nonlinear optical device capable of resolving modes of semiconductor lasers," Appl. Phys. Lett. 55, 1164-1166 (1989).
    [CrossRef]
  5. E. Frlan, J.S. Wight, S. Janz, H. Dai, F. Chatenoud, M. Buchanan, and R. Normandin, "High-resolution surface-emitting spectrometer and deformation sensors with nonlinear waveguides," Opt. Lett. 19, 1657-1659 (1994).
    [CrossRef] [PubMed]
  6. M. Guy, B. Villeneuve, M. Svilans, M. Ttu, and N. Cyr, "Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides," Photonics Technol. Lett. 6, 453-456 (1994).
    [CrossRef]
  7. R. L. Williams, F. Chatenoud, and R. Normandin, "MBE grown, visible, surface emitting harmonic generation lasers," J. Cryst. Growth 111, 1066-1070 (1991).
    [CrossRef]
  8. M. M. Fejer, G. A. Magel, D. H. Jundt, and R.L. Byer, "Quasi-phase matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  9. S. Janz, F. Chatenoud, H. Dai, E. Vilks, M. Buchanan, R. Normandin, and A. J. Springthorpe, "Multilayer AlGaAs heterostructures for second-harmonic generation," Mat. Res. Soc. Symp. Proc. 281, 301-306 (1993).
    [CrossRef]
  10. R. Lodenkamper, M. L. Bortz, M. M. Fejer, K. Bacher, and J. S. Harris, Jr., "Surface-emitting second-harmonic generation in a semiconductor vertical resonator," Opt. Lett. 18, 1798-1800 (1993).
    [CrossRef] [PubMed]
  11. A. Fiore, V. Berger, R. Rosencher, N. Laurent, S. Theilmann N. Vodjani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996).
    [CrossRef]
  12. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear material," Nature 391, 463-466 (1998).
    [CrossRef]
  13. J. E. Sipe, "New Green-function formalism for surface optics," J. Opt. Soc. Am. B 4, 481-489 (1987).
    [CrossRef]
  14. Y. Beaulieu, S. Janz, H. Dai, E. Frlan, C. Fernando, A. Delge, P. van der Meer, M. Dion, and R. Normandin, "Surface emitted harmonic generation for sensor and display applications," J. Nonlinear Opt. Phys. Mater. 4, 893-927 (1995).
    [CrossRef]
  15. Y. Beaulieu, unpublished (1995).
  16. S. S. Shi, E. Hu, J. P. Zhang, Y. I. Chang, P. Parikh, and U. Mishra, "Photoluminescence study of hydrogenated aluminum oxide-semiconductor interface," Appl. Phys. Lett. 70, 1293-1295 (1997).
    [CrossRef]

Other (16)

R. Normandin and G.I. Stegeman, "Nondegenerate four-wave mixing in integrated optics," Opt. Lett. 4, 58-59 (1979).
[CrossRef] [PubMed]

R. Normandin and G.I. Stegeman, "Picosecond signal processing with planar, nonlinear integrated optics," Appl. Phys. Lett. 36, 253-255 (1980).
[CrossRef]

R. Normandin and G.I. Stegeman, "A picosecond transient digitizer based on nonlinear integrated optics," Appl. Phys. Lett. 40, 759-761 (1982).
[CrossRef]

D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J.S. Smith, "Integrable parametric waveguide spectrometer - a nonlinear optical device capable of resolving modes of semiconductor lasers," Appl. Phys. Lett. 55, 1164-1166 (1989).
[CrossRef]

E. Frlan, J.S. Wight, S. Janz, H. Dai, F. Chatenoud, M. Buchanan, and R. Normandin, "High-resolution surface-emitting spectrometer and deformation sensors with nonlinear waveguides," Opt. Lett. 19, 1657-1659 (1994).
[CrossRef] [PubMed]

M. Guy, B. Villeneuve, M. Svilans, M. Ttu, and N. Cyr, "Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides," Photonics Technol. Lett. 6, 453-456 (1994).
[CrossRef]

R. L. Williams, F. Chatenoud, and R. Normandin, "MBE grown, visible, surface emitting harmonic generation lasers," J. Cryst. Growth 111, 1066-1070 (1991).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R.L. Byer, "Quasi-phase matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

S. Janz, F. Chatenoud, H. Dai, E. Vilks, M. Buchanan, R. Normandin, and A. J. Springthorpe, "Multilayer AlGaAs heterostructures for second-harmonic generation," Mat. Res. Soc. Symp. Proc. 281, 301-306 (1993).
[CrossRef]

R. Lodenkamper, M. L. Bortz, M. M. Fejer, K. Bacher, and J. S. Harris, Jr., "Surface-emitting second-harmonic generation in a semiconductor vertical resonator," Opt. Lett. 18, 1798-1800 (1993).
[CrossRef] [PubMed]

A. Fiore, V. Berger, R. Rosencher, N. Laurent, S. Theilmann N. Vodjani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear material," Nature 391, 463-466 (1998).
[CrossRef]

J. E. Sipe, "New Green-function formalism for surface optics," J. Opt. Soc. Am. B 4, 481-489 (1987).
[CrossRef]

Y. Beaulieu, S. Janz, H. Dai, E. Frlan, C. Fernando, A. Delge, P. van der Meer, M. Dion, and R. Normandin, "Surface emitted harmonic generation for sensor and display applications," J. Nonlinear Opt. Phys. Mater. 4, 893-927 (1995).
[CrossRef]

Y. Beaulieu, unpublished (1995).

S. S. Shi, E. Hu, J. P. Zhang, Y. I. Chang, P. Parikh, and U. Mishra, "Photoluminescence study of hydrogenated aluminum oxide-semiconductor interface," Appl. Phys. Lett. 70, 1293-1295 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SESHG waveguide layer structure showing the Al0.8Ga0.2As/Al0.32Ga0.68As QPM heterostructure core and the Al2O3/Al0.32Ga0.68As mirror layers. The dashed curve shows the calculated intensity profile of the fundamental TE mode.

Fig. 2.
Fig. 2.

The calculated SH cross section Anl for (i) the QPM SESHG waveguide of Fig. 1 (solid line), and (ii) for the same waveguide with the reflectivity of microcavity resonator mirrors artificially switched off as described in text (dashed line).

Fig. 3.
Fig. 3.

The variation with pump wavelength of the measured SH power radiated from the waveguide surface. The solid curve is the calculated SH cross-section from Fig. 2, shifted by 4 nm to match the measured resonance wavelength.

Fig. 4.
Fig. 4.

The SH intensity profile along the SESHG waveguide ridge when pumped by 8 ps long pulses at λ=1554 nm. The output facet is at left and the input facet is at the right. The SH intensity to the right of the dashed line has been scaled up by a factor often.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P = χ xyz ( 2 ) : [ E TM + E TE + E TE + E TM ]
I SH = A t 1 r 2 2 D 0 P ( z ) n ( z ) exp [ i z 0 K ( z ) dz ] dz
+ r D 0 P ( z ) n ( z ) exp [ i z 0 K ( z ) dz ] | 2
P SH = A nl P + P ( L w )

Metrics