Abstract

Simulations of soliton emission and propagation in a linear AlGaAs waveguide with one nonlinear cladding are presented. The device, which has realistic parameters, operates below half the bandgap and emits light into the cladding for a given input power. The use of selective disordering of the MQW guiding layer to realize the linear/nonlinear sections is discussed.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. I. Stegeman, C. T. Seaton, J. Chilwell and D. Smith., "Nonlinear waves guided by thin films," Appl. Phys. Lett. 44, 830-832 (1984).
    [CrossRef]
  2. C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell and S. D. Smith, "Calculations of nonlinear TE waves guided by Thin Dielectric Films Bounded by Nonlinear Media," IEEE J. Quantum Electron. QE-21, 774-783 (1985).
    [CrossRef]
  3. J. V. Moloney, J. Ariyasu, C. T. Seaton and G. I. Stegeman, "Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media," Appl. Phys. Lett. 48, 826-828 (1986).
    [CrossRef]
  4. D. R. Heatley, E. M. Wright, and G. I. Stegeman, "Soliton coupler," Appl. Phys. Lett. 53, 172-174 (1988).
    [CrossRef]
  5. C. J. Hamilton, J. H. Marsh, D. C. Hutchings, J. S. Aitchison, G. T. Kennedy and W. Sibbett, "Localized Kerr-type nonlinearities in GaAs/AlGaAs multiple quantum well structures at 1.55 æm," Appl. Phys. Lett. 68, 3078-3080 (1996).
    [CrossRef]
  6. B. S. Ooi, K. McIlvaney, M. W. Street, A. Saher Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, "Selective quantum-well intermixing on GaAs-AlGaAs structures using impurity-free vacancy diffusion," IEEE J. Quantum Electron. QE-33, 1784-1793 (1997).
  7. R. J. Deri and M. A. Emanuel, "Consistent formula for the refractive index of Al(1-x)Ga(x)As below the band edge," J. Appl. Phys. 77, 4667 (1995).
    [CrossRef]
  8. S. Adachi, "Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y," J. Appl. Phys. 66, 6030 (1989).
    [CrossRef]
  9. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron., 27, 1296-1309 (1991).
    [CrossRef]
  10. C. C. Yang, A. Villeneuve, G. I. Stegeman, Cheng-Hui Lin and Hao-Hsiung Lin, "Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides," IEEE J. Quantum Electron. 29, 2934-2939 (1993).
    [CrossRef]

Other

G. I. Stegeman, C. T. Seaton, J. Chilwell and D. Smith., "Nonlinear waves guided by thin films," Appl. Phys. Lett. 44, 830-832 (1984).
[CrossRef]

C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell and S. D. Smith, "Calculations of nonlinear TE waves guided by Thin Dielectric Films Bounded by Nonlinear Media," IEEE J. Quantum Electron. QE-21, 774-783 (1985).
[CrossRef]

J. V. Moloney, J. Ariyasu, C. T. Seaton and G. I. Stegeman, "Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media," Appl. Phys. Lett. 48, 826-828 (1986).
[CrossRef]

D. R. Heatley, E. M. Wright, and G. I. Stegeman, "Soliton coupler," Appl. Phys. Lett. 53, 172-174 (1988).
[CrossRef]

C. J. Hamilton, J. H. Marsh, D. C. Hutchings, J. S. Aitchison, G. T. Kennedy and W. Sibbett, "Localized Kerr-type nonlinearities in GaAs/AlGaAs multiple quantum well structures at 1.55 æm," Appl. Phys. Lett. 68, 3078-3080 (1996).
[CrossRef]

B. S. Ooi, K. McIlvaney, M. W. Street, A. Saher Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, "Selective quantum-well intermixing on GaAs-AlGaAs structures using impurity-free vacancy diffusion," IEEE J. Quantum Electron. QE-33, 1784-1793 (1997).

R. J. Deri and M. A. Emanuel, "Consistent formula for the refractive index of Al(1-x)Ga(x)As below the band edge," J. Appl. Phys. 77, 4667 (1995).
[CrossRef]

S. Adachi, "Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y," J. Appl. Phys. 66, 6030 (1989).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron., 27, 1296-1309 (1991).
[CrossRef]

C. C. Yang, A. Villeneuve, G. I. Stegeman, Cheng-Hui Lin and Hao-Hsiung Lin, "Anisotropic Two-Photon Transitions in GaAs/AlGaAs Multiple Quantum Well Waveguides," IEEE J. Quantum Electron. 29, 2934-2939 (1993).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (17 KB)     
» Media 2: MOV (70 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

a) The waveguide structure (top). b) The waveguide mode (bottom). The scales are in μm.

Fig. 2.
Fig. 2.

Movie of the output intensity (in red) from the waveguide (whose index profile is depicted in blue) animated as a function of input power. It can be seen that the peak intensity shifts to the right as the input intensity increases. [Media 1]

Fig. 3.
Fig. 3.

Movie of intensity (red), linear (green), and nonlinear (blue) refractive, index profiles throughout propagation at the minimum switching power (0.5 GW/cm2 peak). Note that although the propagation length in this figure is 5 cm, the device length is 5 mm. [Media 2]

Fig. 4.
Fig. 4.

Output intensity profiles from the device for a peak input intensity of 1.5 GW/cm2 for varying waveguide parameters. Curve no. 1 is the output for the device parameters as specified in section 2. The gray strip delimits the core of the waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i dE dz = 1 2 k o n eff d 2 E d x 2 k o n eff [ n 2 ( x ) n eff 2 + 2 n eff n 2 E 2 ] E α 0 2 E

Metrics