Abstract

We demonstrate speckle photography using an optically addressed multiple quantum well spatial light modulator. An optical Fourier transform is used to allow real-time displacement measurements.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. A. Leendertz, "Interferometric displacement measurement on scattering surfaces utilizing speckle effect," J. Phys. E. 3, 214-218 (1970) .
    [CrossRef]
  2. R. P. Khetan and F. P. Chiang, "Strain analysis by one-beam laser speckle interferometry. 1: Single aperture method," Appl. Opt. 15, 2205-2215 (1976).
    [CrossRef] [PubMed]
  3. J. M. Huntley, H. T. Goldrein, and L. R. Benckert, "Parallel processing system for rapid analysis of speckle-photography and particle-image-velocimetry data," Appl. Opt. 32, 3152-3155 (1993).
    [CrossRef] [PubMed]
  4. D. J. Chen, and F. P. Chiang, "Digital processing of Youngs fringes in speckle photography," Opt. Eng. 29, 1413-1419(1990).
    [CrossRef]
  5. D. J. Chen, and F. P. Chiang, "Computer-aided speckle interferometry using spectral amplitude fringes," Appl. Opt. 32, 225-235(1993).
    [CrossRef] [PubMed]
  6. P. M. Petersen, B. Edvold, P. Buchhave, P. E. Anderson and A. Marrakchi, "Photorefractive particle image velocimetry: performance enhancement with bismuth silicon oxide crystals," Opt. Lett. 17, 619-621 (1992).
    [CrossRef] [PubMed]
  7. Yuji Kobayashi, Tamiki Takemori, Naohisa Mukohzaka, Narihrio Toshida, Siji Fukushima, "Real time displacement measurement with FLC-SLM by correlation of speckle patterns," in Spatial Light Modulators and Applications Technical Digest, 1993 ), Vol. 6, (Optical Society of America, Washington, D.C., 1993), pp.26-29.
  8. D. Cunningham, J. Sharpe, K. M. Johnson, "Application of an optically addressed spatial light modulator to real-time speckle photography," Opt. Commun. 101, 311-316 (1993).
    [CrossRef]
  9. S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou and C. L. Adler, "Characterization of high performance integrated optically addressed spatial light modulators," J. Opt. Soc. Am. B 15 (1998)
    [CrossRef]
  10. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. Obryan, T. H. Chiu and W. H. Knox, "Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices," Appl. Phys. Lett. 62, 464-466 (1993).
    [CrossRef]
  11. W. S. Rabinovich, S. R. Bowman, D. S. Katzer and C. S. Kyono, "Intrinsic multiple quantum well spatial light modulators," Appl. Phys. Lett. 66, 1044-1046 (1995)
    [CrossRef]
  12. I. Lahiri, K. M. Kwolek, D. D. Nolte and M. R. Melloch, "Photorefractive p-i-n diode quantum well spatial light modulator," Appl. Phys. Lett. 67 1408-1410 (1995).
    [CrossRef]
  13. Parviz Tayebati, Christos Hantzis and R. N. Sacks, "Monolithic p-i-n GaAlAs multiple quantum well spatial light modulator," Appl. Phys. Lett. 70, 691-693 (1997).
    [CrossRef]

Other

J. A. Leendertz, "Interferometric displacement measurement on scattering surfaces utilizing speckle effect," J. Phys. E. 3, 214-218 (1970) .
[CrossRef]

R. P. Khetan and F. P. Chiang, "Strain analysis by one-beam laser speckle interferometry. 1: Single aperture method," Appl. Opt. 15, 2205-2215 (1976).
[CrossRef] [PubMed]

J. M. Huntley, H. T. Goldrein, and L. R. Benckert, "Parallel processing system for rapid analysis of speckle-photography and particle-image-velocimetry data," Appl. Opt. 32, 3152-3155 (1993).
[CrossRef] [PubMed]

D. J. Chen, and F. P. Chiang, "Digital processing of Youngs fringes in speckle photography," Opt. Eng. 29, 1413-1419(1990).
[CrossRef]

D. J. Chen, and F. P. Chiang, "Computer-aided speckle interferometry using spectral amplitude fringes," Appl. Opt. 32, 225-235(1993).
[CrossRef] [PubMed]

P. M. Petersen, B. Edvold, P. Buchhave, P. E. Anderson and A. Marrakchi, "Photorefractive particle image velocimetry: performance enhancement with bismuth silicon oxide crystals," Opt. Lett. 17, 619-621 (1992).
[CrossRef] [PubMed]

Yuji Kobayashi, Tamiki Takemori, Naohisa Mukohzaka, Narihrio Toshida, Siji Fukushima, "Real time displacement measurement with FLC-SLM by correlation of speckle patterns," in Spatial Light Modulators and Applications Technical Digest, 1993 ), Vol. 6, (Optical Society of America, Washington, D.C., 1993), pp.26-29.

D. Cunningham, J. Sharpe, K. M. Johnson, "Application of an optically addressed spatial light modulator to real-time speckle photography," Opt. Commun. 101, 311-316 (1993).
[CrossRef]

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou and C. L. Adler, "Characterization of high performance integrated optically addressed spatial light modulators," J. Opt. Soc. Am. B 15 (1998)
[CrossRef]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. Obryan, T. H. Chiu and W. H. Knox, "Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices," Appl. Phys. Lett. 62, 464-466 (1993).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer and C. S. Kyono, "Intrinsic multiple quantum well spatial light modulators," Appl. Phys. Lett. 66, 1044-1046 (1995)
[CrossRef]

I. Lahiri, K. M. Kwolek, D. D. Nolte and M. R. Melloch, "Photorefractive p-i-n diode quantum well spatial light modulator," Appl. Phys. Lett. 67 1408-1410 (1995).
[CrossRef]

Parviz Tayebati, Christos Hantzis and R. N. Sacks, "Monolithic p-i-n GaAlAs multiple quantum well spatial light modulator," Appl. Phys. Lett. 70, 691-693 (1997).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (1938 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1.
Figure 1.

Schematic diagram of experimental arrangement.

Figure 2.
Figure 2.

Real-time movie of Young’s fringes produced from the double exposure speckle pattern at the SLM. The fringe spacing decreases with increasing diffuser displacements. The diffuser displacement is indicated in the movie. [Media 1]

Figure 3.
Figure 3.

The displacement inferred from the measured fringe spacing according to Eq. 1 is plotted against the directly measured displacement of the shaker The predominant source of error (10%) was uncertainty in focal, length and magnification of the imaging optics.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

X = λ R f M R ( M W S )

Metrics