Abstract

We demonstrate speckle photography using an optically addressed multiple quantum well spatial light modulator. An optical Fourier transform is used to allow real-time displacement measurements.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect”, J. Phys. E. 3, 214–218 (1970).
    [Crossref]
  2. R. P. Khetan and F. P. Chiang, “Strain analysis by one-beam laser speckle interferometry. 1: Single aperture method”, Appl. Opt. 15, 2205–2215 (1976).
    [Crossref] [PubMed]
  3. J. M. Huntley, H. T. Goldrein, and L. R. Benckert, “Parallel processing system for rapid analysis of speckle-photography and particle-image-velocimetry data”, Appl. Opt. 32, 3152–3155 (1993).
    [Crossref] [PubMed]
  4. D. J. Chen and F. P. Chiang, “Digital processing of Young’s fringes in speckle photography”, Opt. Eng. 29, 1413–1419(1990).
    [Crossref]
  5. D. J. Chen and F. P. Chiang, “Computer-aided speckle interferometry using spectral amplitude fringes”, Appl. Opt. 32, 225–235(1993).
    [Crossref] [PubMed]
  6. P. M. Petersen, B. Edvold, P. Buchhave, P. E. Anderson, and A. Marrakchi, “Photorefractive particle image velocimetry: performance enhancement with bismuth silicon oxide crystals”, Opt. Lett. 17, 619–621 (1992).
    [Crossref] [PubMed]
  7. Yuji Kobayashi, Tamiki Takemori, Naohisa Mukohzaka, Narihrio Toshida, and Siji Fukushima, “Real time displacement measurement with FLC-SLM by correlation of speckle patterns”, in Spatial Light Modulators and Applications Technical Digest, 1993), Vol. 6, (Optical Society of America, Washington, D.C., 1993), pp.26–29.
  8. D. Cunningham, J. Sharpe, and K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography”, Opt. Commun. 101, 311–316 (1993).
    [Crossref]
  9. S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
    [Crossref]
  10. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
    [Crossref]
  11. W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators”, Appl. Phys. Lett. 66, 1044–1046 (1995)
    [Crossref]
  12. I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p-i-n diode quantum well spatial light modulator”, Appl. Phys. Lett. 671408–1410 (1995).
    [Crossref]
  13. Parviz Tayebati, Christos Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well spatial light modulator”, Appl. Phys. Lett. 70, 691–693 (1997).
    [Crossref]

1998 (1)

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
[Crossref]

1997 (1)

Parviz Tayebati, Christos Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well spatial light modulator”, Appl. Phys. Lett. 70, 691–693 (1997).
[Crossref]

1995 (2)

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators”, Appl. Phys. Lett. 66, 1044–1046 (1995)
[Crossref]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p-i-n diode quantum well spatial light modulator”, Appl. Phys. Lett. 671408–1410 (1995).
[Crossref]

1993 (4)

D. Cunningham, J. Sharpe, and K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography”, Opt. Commun. 101, 311–316 (1993).
[Crossref]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
[Crossref]

D. J. Chen and F. P. Chiang, “Computer-aided speckle interferometry using spectral amplitude fringes”, Appl. Opt. 32, 225–235(1993).
[Crossref] [PubMed]

J. M. Huntley, H. T. Goldrein, and L. R. Benckert, “Parallel processing system for rapid analysis of speckle-photography and particle-image-velocimetry data”, Appl. Opt. 32, 3152–3155 (1993).
[Crossref] [PubMed]

1992 (1)

1990 (1)

D. J. Chen and F. P. Chiang, “Digital processing of Young’s fringes in speckle photography”, Opt. Eng. 29, 1413–1419(1990).
[Crossref]

1976 (1)

1970 (1)

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect”, J. Phys. E. 3, 214–218 (1970).
[Crossref]

Adler, C. L.

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
[Crossref]

Anderson, P. E.

Beadie, G.

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
[Crossref]

Benckert, L. R.

Bowman, S. R.

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
[Crossref]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators”, Appl. Phys. Lett. 66, 1044–1046 (1995)
[Crossref]

Buchhave, P.

Chen, D. J.

D. J. Chen and F. P. Chiang, “Computer-aided speckle interferometry using spectral amplitude fringes”, Appl. Opt. 32, 225–235(1993).
[Crossref] [PubMed]

D. J. Chen and F. P. Chiang, “Digital processing of Young’s fringes in speckle photography”, Opt. Eng. 29, 1413–1419(1990).
[Crossref]

Chiang, F. P.

Chiu, T. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
[Crossref]

Cunningham, D.

D. Cunningham, J. Sharpe, and K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography”, Opt. Commun. 101, 311–316 (1993).
[Crossref]

Edvold, B.

Fukushima, Siji

Yuji Kobayashi, Tamiki Takemori, Naohisa Mukohzaka, Narihrio Toshida, and Siji Fukushima, “Real time displacement measurement with FLC-SLM by correlation of speckle patterns”, in Spatial Light Modulators and Applications Technical Digest, 1993), Vol. 6, (Optical Society of America, Washington, D.C., 1993), pp.26–29.

Glass, A. M.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
[Crossref]

Goldrein, H. T.

Hantzis, Christos

Parviz Tayebati, Christos Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well spatial light modulator”, Appl. Phys. Lett. 70, 691–693 (1997).
[Crossref]

Huntley, J. M.

Ikossi-Anastasiou, K.

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
[Crossref]

Johnson, K. M.

D. Cunningham, J. Sharpe, and K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography”, Opt. Commun. 101, 311–316 (1993).
[Crossref]

Katzer, D. S.

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
[Crossref]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators”, Appl. Phys. Lett. 66, 1044–1046 (1995)
[Crossref]

Khetan, R. P.

Kirkpatrick, S. M.

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
[Crossref]

Knox, W. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
[Crossref]

Kobayashi, Yuji

Yuji Kobayashi, Tamiki Takemori, Naohisa Mukohzaka, Narihrio Toshida, and Siji Fukushima, “Real time displacement measurement with FLC-SLM by correlation of speckle patterns”, in Spatial Light Modulators and Applications Technical Digest, 1993), Vol. 6, (Optical Society of America, Washington, D.C., 1993), pp.26–29.

Kwolek, K. M.

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p-i-n diode quantum well spatial light modulator”, Appl. Phys. Lett. 671408–1410 (1995).
[Crossref]

Kyono, C. S.

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators”, Appl. Phys. Lett. 66, 1044–1046 (1995)
[Crossref]

Lahiri, I.

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p-i-n diode quantum well spatial light modulator”, Appl. Phys. Lett. 671408–1410 (1995).
[Crossref]

Leendertz, J. A.

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect”, J. Phys. E. 3, 214–218 (1970).
[Crossref]

Marrakchi, A.

Melloch, M. R.

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p-i-n diode quantum well spatial light modulator”, Appl. Phys. Lett. 671408–1410 (1995).
[Crossref]

Mukohzaka, Naohisa

Yuji Kobayashi, Tamiki Takemori, Naohisa Mukohzaka, Narihrio Toshida, and Siji Fukushima, “Real time displacement measurement with FLC-SLM by correlation of speckle patterns”, in Spatial Light Modulators and Applications Technical Digest, 1993), Vol. 6, (Optical Society of America, Washington, D.C., 1993), pp.26–29.

Nolte, D. D.

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p-i-n diode quantum well spatial light modulator”, Appl. Phys. Lett. 671408–1410 (1995).
[Crossref]

O’bryan, H. M.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
[Crossref]

Olson, D. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
[Crossref]

Partovi, A.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
[Crossref]

Petersen, P. M.

Rabinovich, W. S.

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
[Crossref]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators”, Appl. Phys. Lett. 66, 1044–1046 (1995)
[Crossref]

Sacks, R. N.

Parviz Tayebati, Christos Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well spatial light modulator”, Appl. Phys. Lett. 70, 691–693 (1997).
[Crossref]

Sharpe, J.

D. Cunningham, J. Sharpe, and K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography”, Opt. Commun. 101, 311–316 (1993).
[Crossref]

Takemori, Tamiki

Yuji Kobayashi, Tamiki Takemori, Naohisa Mukohzaka, Narihrio Toshida, and Siji Fukushima, “Real time displacement measurement with FLC-SLM by correlation of speckle patterns”, in Spatial Light Modulators and Applications Technical Digest, 1993), Vol. 6, (Optical Society of America, Washington, D.C., 1993), pp.26–29.

Tayebati, Parviz

Parviz Tayebati, Christos Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well spatial light modulator”, Appl. Phys. Lett. 70, 691–693 (1997).
[Crossref]

Toshida, Narihrio

Yuji Kobayashi, Tamiki Takemori, Naohisa Mukohzaka, Narihrio Toshida, and Siji Fukushima, “Real time displacement measurement with FLC-SLM by correlation of speckle patterns”, in Spatial Light Modulators and Applications Technical Digest, 1993), Vol. 6, (Optical Society of America, Washington, D.C., 1993), pp.26–29.

Zydzik, G. J.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices”, Appl. Phys. Lett. 62, 464–466 (1993).
[Crossref]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators”, Appl. Phys. Lett. 66, 1044–1046 (1995)
[Crossref]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p-i-n diode quantum well spatial light modulator”, Appl. Phys. Lett. 671408–1410 (1995).
[Crossref]

Parviz Tayebati, Christos Hantzis, and R. N. Sacks, “Monolithic p-i-n GaAlAs multiple quantum well spatial light modulator”, Appl. Phys. Lett. 70, 691–693 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

S. R. Bowman, W. S. Rabinovich, G. Beadie, S. M. Kirkpatrick, D. S. Katzer, K. Ikossi-Anastasiou, and C. L. Adler, “Characterization of high performance integrated optically addressed spatial light modulators”, J. Opt. Soc. Am. B 15 (1998)
[Crossref]

J. Phys. E. (1)

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect”, J. Phys. E. 3, 214–218 (1970).
[Crossref]

Opt. Commun. (1)

D. Cunningham, J. Sharpe, and K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography”, Opt. Commun. 101, 311–316 (1993).
[Crossref]

Opt. Eng. (1)

D. J. Chen and F. P. Chiang, “Digital processing of Young’s fringes in speckle photography”, Opt. Eng. 29, 1413–1419(1990).
[Crossref]

Opt. Lett. (1)

Other (1)

Yuji Kobayashi, Tamiki Takemori, Naohisa Mukohzaka, Narihrio Toshida, and Siji Fukushima, “Real time displacement measurement with FLC-SLM by correlation of speckle patterns”, in Spatial Light Modulators and Applications Technical Digest, 1993), Vol. 6, (Optical Society of America, Washington, D.C., 1993), pp.26–29.

Supplementary Material (1)

» Media 1: MOV (1938 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1.
Figure 1.

Schematic diagram of experimental arrangement.

Figure 2.
Figure 2.

Real-time movie of Young’s fringes produced from the double exposure speckle pattern at the SLM. The fringe spacing decreases with increasing diffuser displacements. The diffuser displacement is indicated in the movie. [Media 1]

Figure 3.
Figure 3.

The displacement inferred from the measured fringe spacing according to Eq. 1 is plotted against the directly measured displacement of the shaker The predominant source of error (10%) was uncertainty in focal, length and magnification of the imaging optics.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

X = λ R f M R ( M W S )

Metrics