Abstract

Customised photorefractive quantum well devices have been developed for real-time video acquisition of coherence-gated, three-dimensional images. Holographic imaging with direct video capture has been demonstrated. The technique has been applied to 3-D imaging through turbid media with 50 μm transverse and 60 μm depth resolution being achieved using near infrared light through a phantom of 13 mean free paths scattering depth. Spectrally-resolved holographic imaging has also been demonstrated.

© Optical Society of America

Full Article  |  PDF Article

Errata

R. Jones, M. Tziraki, P. M. French, K. Kwolek, D. Nolte, and M. Melloch, "Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices: errata," Opt. Express 2, 552-552 (1998)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-2-13-552

References

  • View by:
  • |

  1. R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte and M. R. Melloch, "Holographic Storage And High Background Imaging Using Photorefractive Multiple-Quantum Wells," Appl. Phys. Lett. 69, 1837-1839 (1996)
    [CrossRef]
  2. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, "Depth-Resolved Holographic Imaging Through Scattering Media By Photorefraction," Opt. Lett. 20, 1331-1333 (1995)
    [CrossRef] [PubMed]
  3. D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox and A. M. Glass, "Resonant Photodiffractive Effect In Semi-Insulating Multiple Quantum Wells," J. Opt. Soc. Am. B 7, 2217-2225 (1990)
    [CrossRef]
  4. A. Partovi, A. M. Glass, T. H. Chiu and D. T. H. Liu, "High-Speed Joint-Transform Optical-Image Correlator Using GaAs/AlGaAs Semiinsulating Multiple-Quantum Wells And Diode-Lasers," Opt. Lett. 18, 906-908 (1993)
    [CrossRef] [PubMed]
  5. K. M. Kwolek, M. R. Melloch and D. D. Nolte, "Dynamic Holography In A Reflection-Transmission Photorefractive Quantum-Well Asymmetric Fabry-Perot," Appl. Phys. Lett. 65, 385-387 (1994)
    [CrossRef]
  6. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte and M. R. Melloch, "Direct-To-Video Holographic Readout In Multiple Quantum Wells For Three-Dimensional Imaging Through Turbid Media," Opt. Lett. 23, 103-105 (1998)
    [CrossRef]
  7. Q. Wang, R. M. Brubaker, D. D. Nolte and M. R. Melloch, "Photorefractive Quantum-Wells - Transverse Franz-Keldysh Geometry," J. Opt. Soc. Am. B 9, 1626-1641 (1992)
    [CrossRef]
  8. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, "2-Dimensional Imaging Through Diffusing Media Using 150-Fs Gated Electronic Holography Techniques," Opt. Lett. 16 (7), 487-489 (1991)
    [CrossRef] [PubMed]
  9. S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte and M. R. Melloch, "Depth-Resolved Holography Through Turbid Media Using Photorefraction," IEEE J. Sel. Top. Quantum Electron. 2, 965-975 (1996)
    [CrossRef]
  10. M. Firbank, "The Design, Callibration and Usage of a Solid Scattering and Absorbing Phantom for Near Infra Red Spectroscopy," Ph.D thesis submitted to the University of London (1994)
  11. E. N. Leith, C. Chen, H. Chen, Y. Chen, J. Lopez, P. C. Sun, D. Dilworth, "Imaging Through Scattering Media Using Spatial Incoherence Techniques," Opt. Lett. 16, 1820-1822 (1991)
    [CrossRef] [PubMed]
  12. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-Phase-Modulated Kerr-Lens Mode-Locked Cr-Forsterite Laser Source for Optical Coherence Tomography," Opt. Lett. 21, 1839-1841 (1996)
    [CrossRef] [PubMed]

Other

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte and M. R. Melloch, "Holographic Storage And High Background Imaging Using Photorefractive Multiple-Quantum Wells," Appl. Phys. Lett. 69, 1837-1839 (1996)
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, "Depth-Resolved Holographic Imaging Through Scattering Media By Photorefraction," Opt. Lett. 20, 1331-1333 (1995)
[CrossRef] [PubMed]

D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox and A. M. Glass, "Resonant Photodiffractive Effect In Semi-Insulating Multiple Quantum Wells," J. Opt. Soc. Am. B 7, 2217-2225 (1990)
[CrossRef]

A. Partovi, A. M. Glass, T. H. Chiu and D. T. H. Liu, "High-Speed Joint-Transform Optical-Image Correlator Using GaAs/AlGaAs Semiinsulating Multiple-Quantum Wells And Diode-Lasers," Opt. Lett. 18, 906-908 (1993)
[CrossRef] [PubMed]

K. M. Kwolek, M. R. Melloch and D. D. Nolte, "Dynamic Holography In A Reflection-Transmission Photorefractive Quantum-Well Asymmetric Fabry-Perot," Appl. Phys. Lett. 65, 385-387 (1994)
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte and M. R. Melloch, "Direct-To-Video Holographic Readout In Multiple Quantum Wells For Three-Dimensional Imaging Through Turbid Media," Opt. Lett. 23, 103-105 (1998)
[CrossRef]

Q. Wang, R. M. Brubaker, D. D. Nolte and M. R. Melloch, "Photorefractive Quantum-Wells - Transverse Franz-Keldysh Geometry," J. Opt. Soc. Am. B 9, 1626-1641 (1992)
[CrossRef]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, "2-Dimensional Imaging Through Diffusing Media Using 150-Fs Gated Electronic Holography Techniques," Opt. Lett. 16 (7), 487-489 (1991)
[CrossRef] [PubMed]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte and M. R. Melloch, "Depth-Resolved Holography Through Turbid Media Using Photorefraction," IEEE J. Sel. Top. Quantum Electron. 2, 965-975 (1996)
[CrossRef]

M. Firbank, "The Design, Callibration and Usage of a Solid Scattering and Absorbing Phantom for Near Infra Red Spectroscopy," Ph.D thesis submitted to the University of London (1994)

E. N. Leith, C. Chen, H. Chen, Y. Chen, J. Lopez, P. C. Sun, D. Dilworth, "Imaging Through Scattering Media Using Spatial Incoherence Techniques," Opt. Lett. 16, 1820-1822 (1991)
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-Phase-Modulated Kerr-Lens Mode-Locked Cr-Forsterite Laser Source for Optical Coherence Tomography," Opt. Lett. 21, 1839-1841 (1996)
[CrossRef] [PubMed]

Supplementary Material (6)

» Media 1: MOV (585 KB)     
» Media 2: MOV (679 KB)     
» Media 3: MOV (387 KB)     
» Media 4: MOV (1407 KB)     
» Media 5: MOV (439 KB)     
» Media 6: MOV (923 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic of the holographic imaging system (QWP-quarter wave plate, HWP-half wave plate)

Fig. 2.
Fig. 2.

(a) Holographic reconstruction of USAF test chart showing 50 μm bars.

Fig. 3.
Fig. 3.

(a) Holographic reconstruction of USAF test chart recorded direct to video. (b) Fig. 3 (a) with background noise subtracted.

Video. 1.
Video. 1.

Real-time reconstructed image of USAF test chart. [Media 1]

Fig. 4.
Fig. 4.

(a) Video image of 3-D test object and (b) computer reconstruction of 3-D test object.

Video 2.
Video 2.

Real-time reconstructed image of moving 3-D test object. [Media 2]

Fig. 5:
Fig. 5:

(a) Direct “image” through 10 MFP (double pass) of scattering media. Holographic reconstruction of (b) USAF test chart through 13 MFP showing 50 μm bars; (c) 3-D test object showing 100 μm depth resolution through 10 MFP (double pass).

Video 3.
Video 3.

Real-time reconstructed image of USAF test chart moving behind a scattering phantom of 8 MFP (double pass). [Media 3]

Video 4.
Video 4.

Real-time reconstruct of 3-D test object moving behind an 8 MFP scattering phantom [Media 4]

Video 5.
Video 5.

Real-time reconstructed image of USAF test chart behind a static scattering phantom of 8.6 MFP (double pass). [Media 5]

Video 6.
Video 6.

Real-time reconstructed image of USAF test chart behind a moving scattering phantom of 8.6 MFP (double pass). [Media 6]

Fig.6.
Fig.6.

(a) Schematic of USAF test chart partially covered by cut-off filter and (b)-(g) reconstructed images as the recording radiation was tuned from 800 nm to 860 nm.

Metrics