Abstract

The temporal dynamics of photorefractive and absorptive gains during two-wave mixing in Stark geometry photorefractive quantum wells are investigated using moving gratings to break the symmetry of the photorefractive diodes to achieve nonreciprocal energy transfer between two coherent laser beams.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, and A. M. Glass, "Resonant photodiffractive effect in semi-insulating multiple quantum wells," J. Opt. Soc. Am. B 7, 2217-2225 (1990).
    [CrossRef]
  2. D. D. Nolte and M. R. Melloch, "Photorefractive quantum wells and thin films in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic Publishers, Dordrecht, 1995).
  3. Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, "Photorefractive Quantum Wells: Transverse Franz-Keldysh Geometry," J. Opt. Soc. Am. B 9, 1626-1641 (1992).
    [CrossRef]
  4. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O'Bryan, T. H. Chiu, and W. H. Knox, Cr-doped GaAs/AlGaAs semi-insualting multiple quantum well photorefractive devices," Appl. Phys. Lett. 62, 464-466 (1993).
    [CrossRef]
  5. C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, and D. S. Katzer, GaAs/AlGaAs multiquantum well resonant photorefractive devices fabricated using epitaxial lift-off," Appl. Phys. Lett. 64, 2244-2246 (1994).
    [CrossRef]
  6. W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, Intrinsic multiple quantum well spatial light modulators," Appl. Phys. Lett. 66, 1044-1046 (1995).
    [CrossRef]
  7. I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, Photorefractive p-i-n diode quantum well spatial light modulators," Appl. Phys. Lett. 67, 1408-1410 (1995).
    [CrossRef]
  8. I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, High-efficiency stark-geometry photorefractive quantum wells with intrinsic cladding layers," Appl. Phys. Lett. 68, 517-519 (1996).
    [CrossRef]
  9. I. Lahiri, D. D. Nolte, E. S. Harmon, M. R. Melloch, and J. M. Woodall, Ultrafast-lifetime quantum wells with sharp exciton spectra," Appl. Phys. Lett. 66, 2519-2521 (1995).
    [CrossRef]
  10. J. P. Huignard and A. Marrakchi, Coherent signal beam amplification in two-wave mixing experiments with photorefractive BSO crystals," Opt. Commun. 38, 249-254 (1981).
    [CrossRef]
  11. Q. N. Wang, D. D. Nolte, and M. R. Melloch, Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells," Appl. Phys. Lett. 59, 256-258 (1991).
    [CrossRef]
  12. S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, "Running" holograms in photorefractive BSO crystals," Opt. Commun. 44, 19-23 (1982).
    [CrossRef]
  13. G. C. Valley, "Two-wave mixing with an applied field and a moving grating," J. Opt. Soc. Am. B 1, 868-873 (1984).
    [CrossRef]
  14. D. D. Nolte, "Photorefractive transport and multi-wave mixing in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic Publishers, Dordrecht, 1995).
  15. I. Lahiri, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, "Two-wave mixing in Stark-geometry photorefractive quantum wells using moving gratings," Appl. Phys. Lett. 69, 3414-3416 (1996).
    [CrossRef]
  16. I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, "Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes," To appear in Opt. Lett. (1998).
    [CrossRef]

Other (16)

D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, and A. M. Glass, "Resonant photodiffractive effect in semi-insulating multiple quantum wells," J. Opt. Soc. Am. B 7, 2217-2225 (1990).
[CrossRef]

D. D. Nolte and M. R. Melloch, "Photorefractive quantum wells and thin films in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic Publishers, Dordrecht, 1995).

Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, "Photorefractive Quantum Wells: Transverse Franz-Keldysh Geometry," J. Opt. Soc. Am. B 9, 1626-1641 (1992).
[CrossRef]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O'Bryan, T. H. Chiu, and W. H. Knox, Cr-doped GaAs/AlGaAs semi-insualting multiple quantum well photorefractive devices," Appl. Phys. Lett. 62, 464-466 (1993).
[CrossRef]

C. S. Kyono, K. Ikossi-Anastasiou, W. S. Rabinovich, S. R. Bowman, and D. S. Katzer, GaAs/AlGaAs multiquantum well resonant photorefractive devices fabricated using epitaxial lift-off," Appl. Phys. Lett. 64, 2244-2246 (1994).
[CrossRef]

W. S. Rabinovich, S. R. Bowman, D. S. Katzer, and C. S. Kyono, Intrinsic multiple quantum well spatial light modulators," Appl. Phys. Lett. 66, 1044-1046 (1995).
[CrossRef]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, Photorefractive p-i-n diode quantum well spatial light modulators," Appl. Phys. Lett. 67, 1408-1410 (1995).
[CrossRef]

I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, High-efficiency stark-geometry photorefractive quantum wells with intrinsic cladding layers," Appl. Phys. Lett. 68, 517-519 (1996).
[CrossRef]

I. Lahiri, D. D. Nolte, E. S. Harmon, M. R. Melloch, and J. M. Woodall, Ultrafast-lifetime quantum wells with sharp exciton spectra," Appl. Phys. Lett. 66, 2519-2521 (1995).
[CrossRef]

J. P. Huignard and A. Marrakchi, Coherent signal beam amplification in two-wave mixing experiments with photorefractive BSO crystals," Opt. Commun. 38, 249-254 (1981).
[CrossRef]

Q. N. Wang, D. D. Nolte, and M. R. Melloch, Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells," Appl. Phys. Lett. 59, 256-258 (1991).
[CrossRef]

S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, "Running" holograms in photorefractive BSO crystals," Opt. Commun. 44, 19-23 (1982).
[CrossRef]

G. C. Valley, "Two-wave mixing with an applied field and a moving grating," J. Opt. Soc. Am. B 1, 868-873 (1984).
[CrossRef]

D. D. Nolte, "Photorefractive transport and multi-wave mixing in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic Publishers, Dordrecht, 1995).

I. Lahiri, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, "Two-wave mixing in Stark-geometry photorefractive quantum wells using moving gratings," Appl. Phys. Lett. 69, 3414-3416 (1996).
[CrossRef]

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, "Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes," To appear in Opt. Lett. (1998).
[CrossRef]

Supplementary Material (4)

» Media 1: MOV (46 KB)     
» Media 2: MOV (72 KB)     
» Media 3: MOV (62 KB)     
» Media 4: MOV (95 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Video: The co-polarized (mixing) transmitted intensity upon copolarization demonstrates nonreciprocal energy transfer between the two laser beams. The cross-polarized state shows the transient electroabsorption of the device (no mixing). [Media 1]

Fig. 2.
Fig. 2.

Video: The temporal response of the photorefractive gain for several detunings. The inset shows that the frequency of the oscillatory gain is equal to the frequency difference Ω between the two laser beams. [Media 2]

Fig. 3.
Fig. 3.

Video: The temporal response of the (a) photorefractive gain and absorptive gain [Media 3], and (b) complex gain for different electric fields at a detuning of Ω = 7 kHz. The inset shows the peak transient response for increasing electric fields. [Media 4]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ n = ( 1 2 L ) [ ( I 1 I 1 I 0 1 ) ( I 2 I 2 I 0 2 ) ]
Γ α = ( 1 2 L ) [ ( I 1 I 1 I 0 1 ) + ( I 2 I 2 I 0 2 ) ]
Γ ˜ ( t ) = Γ n ( t ) + i Γ α ( t )

Metrics