Abstract

Ideal n-type layers are highly desired for high performance organic light emitting diodes (OLEDs). For the first time, we studied the combination of a low-temperature-evaporable n-dopant KBH4 and a high mobility electron transport material 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA). The excellent transporting property of the DPyPA: KBH4 layer allows the fine tuning of the OLED performance by varying the thickness of the n-doped layer in a wide range (from 10 nm to 50 nm, 100 nm, 150 nm and 200 nm). The device with the optimized n-type layer thickness of 150 nm shows the best performance with a high current efficiency of 27.60 cd/A at the brightness 10,000 cd/m2, which is about 40% higher than the device with a 10 nm n-type layer (19.95 cd/A at 10,000 cd/m2). The high performance is attributed to the optimization of optical path and the decrease of the loss in the organic layer/cathode interface due to the thick n-doped layer.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
    [CrossRef]
  2. M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, “Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays,” Adv. Mater. (Deerfield Beach Fla.)14(22), 1633–1636 (2002).
    [CrossRef]
  3. T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008).
    [CrossRef]
  4. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
    [CrossRef] [PubMed]
  5. J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett.73(20), 2866–2868 (1998).
    [CrossRef]
  6. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002).
    [CrossRef]
  7. C. Chang, M. Hsieh, J. Chen, S. Hwang, and C. H. Chen, “- Highly power efficient organic light-emitting diodes with a p-doping layer,” Appl. Phys. Lett.89(25), 253504 (2006).
    [CrossRef]
  8. R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, “Ultrastable and efficient red organic light emitting diodes with doped transport layers,” Appl. Phys. Lett.89(6), 061111 (2006).
    [CrossRef]
  9. T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005).
    [CrossRef]
  10. K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
    [CrossRef]
  11. Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
    [CrossRef]
  12. Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
    [CrossRef]
  13. M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007).
    [CrossRef]

2011 (1)

Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
[CrossRef]

2010 (1)

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

2009 (2)

Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
[CrossRef]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
[CrossRef] [PubMed]

2008 (1)

T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008).
[CrossRef]

2007 (1)

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007).
[CrossRef]

2006 (2)

C. Chang, M. Hsieh, J. Chen, S. Hwang, and C. H. Chen, “- Highly power efficient organic light-emitting diodes with a p-doping layer,” Appl. Phys. Lett.89(25), 253504 (2006).
[CrossRef]

R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, “Ultrastable and efficient red organic light emitting diodes with doped transport layers,” Appl. Phys. Lett.89(6), 061111 (2006).
[CrossRef]

2005 (1)

T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005).
[CrossRef]

2002 (2)

J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002).
[CrossRef]

M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, “Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays,” Adv. Mater. (Deerfield Beach Fla.)14(22), 1633–1636 (2002).
[CrossRef]

1998 (1)

J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett.73(20), 2866–2868 (1998).
[CrossRef]

1987 (1)

C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Adachi, C.

T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005).
[CrossRef]

Blochwitz, J.

J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002).
[CrossRef]

Cao, Y.

Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
[CrossRef]

Chan, M. Y.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007).
[CrossRef]

Chang, C.

C. Chang, M. Hsieh, J. Chen, S. Hwang, and C. H. Chen, “- Highly power efficient organic light-emitting diodes with a p-doping layer,” Appl. Phys. Lett.89(25), 253504 (2006).
[CrossRef]

Chen, C. H.

C. Chang, M. Hsieh, J. Chen, S. Hwang, and C. H. Chen, “- Highly power efficient organic light-emitting diodes with a p-doping layer,” Appl. Phys. Lett.89(25), 253504 (2006).
[CrossRef]

Chen, J.

C. Chang, M. Hsieh, J. Chen, S. Hwang, and C. H. Chen, “- Highly power efficient organic light-emitting diodes with a p-doping layer,” Appl. Phys. Lett.89(25), 253504 (2006).
[CrossRef]

Choi, B. K.

T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008).
[CrossRef]

Dong, G. F.

Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
[CrossRef]

Duan, L.

Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
[CrossRef]

Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
[CrossRef]

Forrest, S. R.

M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, “Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays,” Adv. Mater. (Deerfield Beach Fla.)14(22), 1633–1636 (2002).
[CrossRef]

Fung, M. K.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007).
[CrossRef]

Hsieh, M.

C. Chang, M. Hsieh, J. Chen, S. Hwang, and C. H. Chen, “- Highly power efficient organic light-emitting diodes with a p-doping layer,” Appl. Phys. Lett.89(25), 253504 (2006).
[CrossRef]

Huang, J. S.

J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002).
[CrossRef]

Hwang, S.

C. Chang, M. Hsieh, J. Chen, S. Hwang, and C. H. Chen, “- Highly power efficient organic light-emitting diodes with a p-doping layer,” Appl. Phys. Lett.89(25), 253504 (2006).
[CrossRef]

Jeon, S. O.

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

Kang, S.-K.

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

Kido, J.

T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008).
[CrossRef]

J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett.73(20), 2866–2868 (1998).
[CrossRef]

Kim, M. S.

T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008).
[CrossRef]

Lai, S. L.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007).
[CrossRef]

Lau, K. M.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007).
[CrossRef]

Lee, C. S.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007).
[CrossRef]

Lee, J. Y.

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

Lee, S. T.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007).
[CrossRef]

Lee, T. W.

T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008).
[CrossRef]

Lee, T.-W.

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

Leo, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
[CrossRef] [PubMed]

R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, “Ultrastable and efficient red organic light emitting diodes with doped transport layers,” Appl. Phys. Lett.89(6), 061111 (2006).
[CrossRef]

J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002).
[CrossRef]

M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, “Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays,” Adv. Mater. (Deerfield Beach Fla.)14(22), 1633–1636 (2002).
[CrossRef]

Lindner, F.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
[CrossRef] [PubMed]

Liu, Q.

Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
[CrossRef]

Liu, S. Y.

J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002).
[CrossRef]

Lüssem, B.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
[CrossRef] [PubMed]

Maeda, C.

T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005).
[CrossRef]

Matsumoto, T.

J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett.73(20), 2866–2868 (1998).
[CrossRef]

Meerheim, R.

R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, “Ultrastable and efficient red organic light emitting diodes with doped transport layers,” Appl. Phys. Lett.89(6), 061111 (2006).
[CrossRef]

Min, S.-Y.

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

Murase, S.

T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005).
[CrossRef]

Noh, T.

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008).
[CrossRef]

Oyamada, T.

T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005).
[CrossRef]

Pfeiffer, M.

R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, “Ultrastable and efficient red organic light emitting diodes with doped transport layers,” Appl. Phys. Lett.89(6), 061111 (2006).
[CrossRef]

J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002).
[CrossRef]

M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, “Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays,” Adv. Mater. (Deerfield Beach Fla.)14(22), 1633–1636 (2002).
[CrossRef]

Qiao, J.

Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
[CrossRef]

Qiu, Y.

Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
[CrossRef]

Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
[CrossRef]

Reineke, S.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
[CrossRef] [PubMed]

Sasabe, H.

T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005).
[CrossRef]

Schwartz, G.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
[CrossRef] [PubMed]

Seidler, N.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
[CrossRef] [PubMed]

Shin, D. W.

T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008).
[CrossRef]

Sun, Y. D.

Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
[CrossRef]

Tang, C. W.

C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Thompson, M. E.

M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, “Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays,” Adv. Mater. (Deerfield Beach Fla.)14(22), 1633–1636 (2002).
[CrossRef]

Tominaga, T.

T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005).
[CrossRef]

Vanslyke, S. A.

C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Walzer, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
[CrossRef] [PubMed]

R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, “Ultrastable and efficient red organic light emitting diodes with doped transport layers,” Appl. Phys. Lett.89(6), 061111 (2006).
[CrossRef]

Wang, L. D.

Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
[CrossRef]

Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
[CrossRef]

Werner, A.

J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002).
[CrossRef]

Yang, H.-J.

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

Yook, K. S.

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

Zhang, D. Q.

Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
[CrossRef]

Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
[CrossRef]

Zhang, G. H.

Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
[CrossRef]

Adv. Funct. Mater. (3)

K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010).
[CrossRef]

Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011).
[CrossRef]

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, “Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays,” Adv. Mater. (Deerfield Beach Fla.)14(22), 1633–1636 (2002).
[CrossRef]

Appl. Phys. Lett. (7)

T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008).
[CrossRef]

J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett.73(20), 2866–2868 (1998).
[CrossRef]

J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002).
[CrossRef]

C. Chang, M. Hsieh, J. Chen, S. Hwang, and C. H. Chen, “- Highly power efficient organic light-emitting diodes with a p-doping layer,” Appl. Phys. Lett.89(25), 253504 (2006).
[CrossRef]

R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, “Ultrastable and efficient red organic light emitting diodes with doped transport layers,” Appl. Phys. Lett.89(6), 061111 (2006).
[CrossRef]

T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005).
[CrossRef]

C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009).
[CrossRef]

Nature (1)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structures of the two types of devices (Devices I are varied with different concentration in the n-doped layer and Device II with different thickness of n-doped layer)

Fig. 2
Fig. 2

Characteristics of Devices I (1-3) with different concentration of KBH4 and the control device with a Alq3: Li layer. a) is the J-V-B characteristics (current density and brightness versus voltage), b) is the CE-B-PE characteristics (current efficiency and power efficiency versus brightness)

Fig. 3
Fig. 3

Characteristics of Devices II (1-4) with different thickness of n-doped layer compared to Device I-2. a) is the J-V-B characteristics (current density and brightness versus voltage), b) is the CE-B-PE characteristics (current efficiency and power efficiency versus brightness)

Fig. 4
Fig. 4

The electroluminescent (EL) spectra and CIE of Device II(1-4) and Device I-2

Fig. 5
Fig. 5

Measured and simulated CIE coordinates

Fig. 6
Fig. 6

a) EL spectra at viewing angle of 0°, 30°, 45°, 60° for Device I-2 and Device II-3, respectively. b) Polar plots of measured EL intensity (normalized to the 00 intensity) for Device I-2 (circle) and Device II-3(triangle).

Tables (1)

Tables Icon

Table 1 CIE coordinates of Device II-3 at driving various voltages.

Metrics