Abstract

Broadband wide-angle antireflection characteristics of aluminum-doped zinc oxide (AZO)/silicon (Si) shell/core subwavelength grating (SWG) structures with a hydrophobic surface, together with theoretical prediction using a rigorous coupled-wave analysis simulation, were investigated for Si-based solar cells. The AZO films with different thicknesses were deposited on Si SWGs by rf magnetron sputtering method, which forms a shell/core structure. The AZO/Si shell/core SWGs reduced significantly the surface reflection compared to the AZO films/Si substrate. The coverage of AZO films on Si SWGs improved the antireflective property over a wider incident angle. The AZO/Si shell/core SWG structure with a 200 nm-thick AZO layer deposited at an rf power of 200 W exhibited a water contact angle of 123°. This structure also exhibited a low average reflectance of ~2% over a wide wavelength range of 300-2100 nm with a solar weighted reflectance of 2.8%, maintaining a reflectance of < 9.2% at wavelengths of 300-2100 nm up to the incident angle of θi = 70°. The effective electrical properties of AZO films in AZO/Si shell/core SWGs were also analyzed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Braun, “Design of single layer antireflection coatings for InP/In0.53Ga0.47As/InP photodetectors for the 1200-1600 nm wavelength range,” Appl. Opt.27(10), 2006–2011 (1988).
    [CrossRef] [PubMed]
  2. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
    [CrossRef] [PubMed]
  3. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev.38(8), 1925–1934 (1991).
    [CrossRef]
  4. N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface texture by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett.97(19), 191912 (2010).
    [CrossRef]
  5. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt.42(22), 4573–4579 (2003).
    [CrossRef] [PubMed]
  6. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).
  7. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
    [CrossRef]
  8. G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells85(3), 321–331 (2005).
    [CrossRef]
  9. K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature399(6738), 764–766 (1999).
    [CrossRef]
  10. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  11. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
    [CrossRef] [PubMed]
  12. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
    [CrossRef] [PubMed]
  13. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
    [CrossRef]
  14. O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol.4(9), 592–597 (2009).
    [CrossRef] [PubMed]
  15. C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
    [CrossRef] [PubMed]
  16. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  17. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B100(4), 891–896 (2010).
    [CrossRef]
  18. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
    [CrossRef]
  19. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3), A308–A313 (2010).
    [CrossRef] [PubMed]
  20. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
    [CrossRef]
  21. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B21(6), 2874–2877 (2003).
    [CrossRef]
  22. H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10(2), 63–73 (2003).
    [CrossRef]
  23. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010).
    [CrossRef]
  24. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol.20(4), S35–S44 (2005).
    [CrossRef]
  25. S. R. Kurtz and R. G. Gordon, “Transparent conducting electrodes on silicon,” Sol. Energy Mater.15(4), 229–236 (1987).
    [CrossRef]
  26. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3), A258–A268 (2011).
    [CrossRef] [PubMed]
  27. D. Kim, I. Yun, and H. Kim, “Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells,” Curr. Appl. Phys.10(3 S1), S459–S462 (2010).
    [CrossRef] [PubMed]
  28. O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
    [CrossRef]
  29. T. Mizuta, T. Ishibashi, T. Minemoto, H. Takakura, and Y. Hamakawa, “Chemical deposition of zinc oxide thin films on silicon substrate,” Thin Solid Films515(4), 2458–2463 (2006).
    [CrossRef]
  30. F. Chaabouni, M. Abaab, and B. Rezig, “Characterization of n-ZnO/p-Si films grown by magnetron sputtering,” Superlattices Microstruct.39(1–4), 171–178 (2006).
    [CrossRef]
  31. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
    [CrossRef]
  32. Y. Tak and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
    [CrossRef] [PubMed]
  33. J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells94(5), 930–934 (2010).
    [CrossRef]
  34. J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, “Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties,” J. Phys. D Appl. Phys.41(13), 135409 (2008).
    [CrossRef]
  35. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl.18(3), 195–203 (2010).
    [CrossRef]
  36. S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
    [CrossRef]
  37. M. G. Moharam, “Coupled-wave analysis of two-dimensional gratings,” Proc. SPIE883, 8–11 (1988).
  38. A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
    [CrossRef]
  39. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  40. J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).
  41. K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev.57(10), 2427–2433 (2010).
    [CrossRef]
  42. Y. Yang, X. Zeng, Y. Zeng, L. Liu, and Q. Chen, “Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications,” Appl. Surf. Sci.257(1), 232–238 (2010).
    [CrossRef]
  43. M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969).
    [CrossRef]
  44. H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, “Low temperature synthesis of sol–gel derived Al-doped ZnO thin films with rapid thermal annealing process,” J. Mater. Sci. Mater. Electron.21(6), 589–594 (2010).
    [CrossRef]
  45. H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
    [CrossRef]
  46. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]
  47. J. Wang and L. L. Shaw, “Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering,” Scr. Mater.63(6), 593–596 (2010).
    [CrossRef]
  48. D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells81(1), 13–24 (2004).
    [CrossRef]
  49. B. Thaidigsmann, A. Wolf, and D. Biro, “Accurate determination of the IQE of screen printed silicon solar cells by accounting for the finite reflectance of metal contacts,” Proc. 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 21–25 September (2009).

2011 (2)

J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3), A258–A268 (2011).
[CrossRef] [PubMed]

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

2010 (14)

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

J. Wang and L. L. Shaw, “Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering,” Scr. Mater.63(6), 593–596 (2010).
[CrossRef]

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev.57(10), 2427–2433 (2010).
[CrossRef]

Y. Yang, X. Zeng, Y. Zeng, L. Liu, and Q. Chen, “Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications,” Appl. Surf. Sci.257(1), 232–238 (2010).
[CrossRef]

H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, “Low temperature synthesis of sol–gel derived Al-doped ZnO thin films with rapid thermal annealing process,” J. Mater. Sci. Mater. Electron.21(6), 589–594 (2010).
[CrossRef]

D. Kim, I. Yun, and H. Kim, “Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells,” Curr. Appl. Phys.10(3 S1), S459–S462 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B100(4), 891–896 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010).
[CrossRef]

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells94(5), 930–934 (2010).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl.18(3), 195–203 (2010).
[CrossRef]

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface texture by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett.97(19), 191912 (2010).
[CrossRef]

M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3), A308–A313 (2010).
[CrossRef] [PubMed]

2009 (3)

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol.4(9), 592–597 (2009).
[CrossRef] [PubMed]

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

2008 (7)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, “Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties,” J. Phys. D Appl. Phys.41(13), 135409 (2008).
[CrossRef]

J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

2007 (2)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

2006 (3)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

T. Mizuta, T. Ishibashi, T. Minemoto, H. Takakura, and Y. Hamakawa, “Chemical deposition of zinc oxide thin films on silicon substrate,” Thin Solid Films515(4), 2458–2463 (2006).
[CrossRef]

F. Chaabouni, M. Abaab, and B. Rezig, “Characterization of n-ZnO/p-Si films grown by magnetron sputtering,” Superlattices Microstruct.39(1–4), 171–178 (2006).
[CrossRef]

2005 (5)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol.20(4), S35–S44 (2005).
[CrossRef]

Y. Tak and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
[CrossRef] [PubMed]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells85(3), 321–331 (2005).
[CrossRef]

2004 (1)

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells81(1), 13–24 (2004).
[CrossRef]

2003 (3)

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt.42(22), 4573–4579 (2003).
[CrossRef] [PubMed]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B21(6), 2874–2877 (2003).
[CrossRef]

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10(2), 63–73 (2003).
[CrossRef]

2000 (1)

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
[CrossRef]

1999 (2)

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature399(6738), 764–766 (1999).
[CrossRef]

1991 (1)

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev.38(8), 1925–1934 (1991).
[CrossRef]

1988 (2)

1987 (1)

S. R. Kurtz and R. G. Gordon, “Transparent conducting electrodes on silicon,” Sol. Energy Mater.15(4), 229–236 (1987).
[CrossRef]

1969 (1)

M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969).
[CrossRef]

Abaab, M.

F. Chaabouni, M. Abaab, and B. Rezig, “Characterization of n-ZnO/p-Si films grown by magnetron sputtering,” Superlattices Microstruct.39(1–4), 171–178 (2006).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Bae, S. Y.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl.18(3), 195–203 (2010).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

Bai, X.

J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, “Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties,” J. Phys. D Appl. Phys.41(13), 135409 (2008).
[CrossRef]

Bakhru, H.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface texture by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett.97(19), 191912 (2010).
[CrossRef]

Bello, I.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

Beneking, C.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl.18(3), 195–203 (2010).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

Braun, D. M.

Brett, M. J.

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells85(3), 321–331 (2005).
[CrossRef]

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt.42(22), 4573–4579 (2003).
[CrossRef] [PubMed]

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature399(6738), 764–766 (1999).
[CrossRef]

Broer, D. J.

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature399(6738), 764–766 (1999).
[CrossRef]

Buie, D.

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells81(1), 13–24 (2004).
[CrossRef]

Byun, D.

J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).

Cao, Y.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

Chaabouni, F.

F. Chaabouni, M. Abaab, and B. Rezig, “Characterization of n-ZnO/p-Si films grown by magnetron sputtering,” Superlattices Microstruct.39(1–4), 171–178 (2006).
[CrossRef]

Chang, C. H.

M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3), A308–A313 (2010).
[CrossRef] [PubMed]

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chang, E. Y.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev.57(10), 2427–2433 (2010).
[CrossRef]

Chang, F. Y.

Chang, Y. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Chen, J. Y.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells94(5), 930–934 (2010).
[CrossRef]

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

Chen, Q.

Y. Yang, X. Zeng, Y. Zeng, L. Liu, and Q. Chen, “Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications,” Appl. Surf. Sci.257(1), 232–238 (2010).
[CrossRef]

Chen, Z. H.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

Cheng, H. M.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

Chhajed, S.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

Chiu, C. H.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chiu, M. Y.

Chou, S. Y.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B21(6), 2874–2877 (2003).
[CrossRef]

Chow, L.

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

Colgan, M. J.

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells85(3), 321–331 (2005).
[CrossRef]

Cong, H. T.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

Cui, Y.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Deng, Z.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

Dey, C. J.

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells81(1), 13–24 (2004).
[CrossRef]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B21(6), 2874–2877 (2003).
[CrossRef]

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B21(6), 2874–2877 (2003).
[CrossRef]

Gordon, R. G.

S. R. Kurtz and R. G. Gordon, “Transparent conducting electrodes on silicon,” Sol. Energy Mater.15(4), 229–236 (1987).
[CrossRef]

Green, M. A.

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev.38(8), 1925–1934 (1991).
[CrossRef]

Grimes, C. A.

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol.4(9), 592–597 (2009).
[CrossRef] [PubMed]

Hamakawa, Y.

T. Mizuta, T. Ishibashi, T. Minemoto, H. Takakura, and Y. Hamakawa, “Chemical deposition of zinc oxide thin films on silicon substrate,” Thin Solid Films515(4), 2458–2463 (2006).
[CrossRef]

Houben, L.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

Hsu, C. M.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Hsu, S. H.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Huang, C.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

Huang, J.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

Huang, M.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface texture by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett.97(19), 191912 (2010).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Hur, J. S.

J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).

Husain, M.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Ishibashi, T.

T. Mizuta, T. Ishibashi, T. Minemoto, H. Takakura, and Y. Hamakawa, “Chemical deposition of zinc oxide thin films on silicon substrate,” Thin Solid Films515(4), 2458–2463 (2006).
[CrossRef]

Jääskeläinen, A. J.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
[CrossRef]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Kadakia, N.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface texture by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett.97(19), 191912 (2010).
[CrossRef]

Kar, M.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Kauppinen, E. I.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
[CrossRef]

Kennedy, S. R.

Khallaf, H.

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

Kiema, G. K.

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells85(3), 321–331 (2005).
[CrossRef]

Kikuta, H.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10(2), 63–73 (2003).
[CrossRef]

Kim, D.

D. Kim, I. Yun, and H. Kim, “Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells,” Curr. Appl. Phys.10(3 S1), S459–S462 (2010).
[CrossRef] [PubMed]

Kim, H.

D. Kim, I. Yun, and H. Kim, “Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells,” Curr. Appl. Phys.10(3 S1), S459–S462 (2010).
[CrossRef] [PubMed]

Kim, J.

J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).

Kim, J. K.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

Kluth, O.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

Kumar, D.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Kumar, V.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Kuo, H. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Kurtz, S. R.

S. R. Kurtz and R. G. Gordon, “Transparent conducting electrodes on silicon,” Sol. Energy Mater.15(4), 229–236 (1987).
[CrossRef]

Lan, H.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

Lee, C.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Lee, C. S.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

Lee, S. T.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Lee, Y. T.

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B100(4), 891–896 (2010).
[CrossRef]

Leem, J. W.

J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3), A258–A268 (2011).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B100(4), 891–896 (2010).
[CrossRef]

Li, Y.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev.57(10), 2427–2433 (2010).
[CrossRef]

Lin, S. Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

Liu, L.

Y. Yang, X. Zeng, Y. Zeng, L. Liu, and Q. Chen, “Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications,” Appl. Surf. Sci.257(1), 232–238 (2010).
[CrossRef]

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

Liu, Z.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

Löffl, A.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

Lumme, K.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
[CrossRef]

Lupan, O.

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

Manohara, H.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

McCann, M. J.

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells81(1), 13–24 (2004).
[CrossRef]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Mendelson, M. I.

M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969).
[CrossRef]

Minami, T.

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol.20(4), S35–S44 (2005).
[CrossRef]

Minemoto, T.

T. Mizuta, T. Ishibashi, T. Minemoto, H. Takakura, and Y. Hamakawa, “Chemical deposition of zinc oxide thin films on silicon substrate,” Thin Solid Films515(4), 2458–2463 (2006).
[CrossRef]

Mizuta, T.

T. Mizuta, T. Ishibashi, T. Minemoto, H. Takakura, and Y. Hamakawa, “Chemical deposition of zinc oxide thin films on silicon substrate,” Thin Solid Films515(4), 2458–2463 (2006).
[CrossRef]

Mobasser, S.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Moharam, M. G.

M. G. Moharam, “Coupled-wave analysis of two-dimensional gratings,” Proc. SPIE883, 8–11 (1988).

Monaico, E.

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

Mont, F. W.

Naczas, S.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface texture by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett.97(19), 191912 (2010).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Paulose, M.

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol.4(9), 592–597 (2009).
[CrossRef] [PubMed]

Peiponen, K. E.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
[CrossRef]

Peng, K.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Poxson, D. J.

Railean, S.

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

Räty, J.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
[CrossRef]

Rech, B.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

Ren, M. F.

H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, “Low temperature synthesis of sol–gel derived Al-doped ZnO thin films with rapid thermal annealing process,” J. Mater. Sci. Mater. Electron.21(6), 589–594 (2010).
[CrossRef]

Rezig, B.

F. Chaabouni, M. Abaab, and B. Rezig, “Characterization of n-ZnO/p-Si films grown by magnetron sputtering,” Superlattices Microstruct.39(1–4), 171–178 (2006).
[CrossRef]

Richard, O.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
[CrossRef]

Robbie, K.

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature399(6738), 764–766 (1999).
[CrossRef]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Sahoo, K. C.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev.57(10), 2427–2433 (2010).
[CrossRef]

Schock, H. W.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

Schöpe, G.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

Schubert, E. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

Schubert, M. F.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

Shaw, L. L.

J. Wang and L. L. Shaw, “Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering,” Scr. Mater.63(6), 593–596 (2010).
[CrossRef]

Shishiyanu, S.

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

Shishiyanu, T.

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

Singh, P. K.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

Son, C. S.

J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).

Song, H. S.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

Song, J. B.

J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).

Song, Y. M.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B100(4), 891–896 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010).
[CrossRef]

Sontea, V.

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

Srivastava, S. K.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Sun, K. W.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells94(5), 930–934 (2010).
[CrossRef]

Tak, Y.

Y. Tak and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
[CrossRef] [PubMed]

Takakura, H.

T. Mizuta, T. Ishibashi, T. Minemoto, H. Takakura, and Y. Hamakawa, “Chemical deposition of zinc oxide thin films on silicon substrate,” Thin Solid Films515(4), 2458–2463 (2006).
[CrossRef]

Tang, Y. B.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

Tapper, U.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
[CrossRef]

Tong, H.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

Toyota, H.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10(2), 63–73 (2003).
[CrossRef]

Tsai, M. A.

Ursaki, V.

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

Varghese, O. K.

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol.4(9), 592–597 (2009).
[CrossRef] [PubMed]

Wagner, H.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

Wang, C.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

Wang, H.

H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, “Low temperature synthesis of sol–gel derived Al-doped ZnO thin films with rapid thermal annealing process,” J. Mater. Sci. Mater. Electron.21(6), 589–594 (2010).
[CrossRef]

Wang, J.

J. Wang and L. L. Shaw, “Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering,” Scr. Mater.63(6), 593–596 (2010).
[CrossRef]

Weber, K. J.

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells81(1), 13–24 (2004).
[CrossRef]

Wieder, S.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B21(6), 2874–2877 (2003).
[CrossRef]

Wu, Y.

J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, “Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties,” J. Phys. D Appl. Phys.41(13), 135409 (2008).
[CrossRef]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

Xiao, J.

J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, “Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties,” J. Phys. D Appl. Phys.41(13), 135409 (2008).
[CrossRef]

Xu, J. W.

H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, “Low temperature synthesis of sol–gel derived Al-doped ZnO thin films with rapid thermal annealing process,” J. Mater. Sci. Mater. Electron.21(6), 589–594 (2010).
[CrossRef]

Xu, M. H.

H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, “Low temperature synthesis of sol–gel derived Al-doped ZnO thin films with rapid thermal annealing process,” J. Mater. Sci. Mater. Electron.21(6), 589–594 (2010).
[CrossRef]

Xu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yan, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yang, C. S.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yang, L.

H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, “Low temperature synthesis of sol–gel derived Al-doped ZnO thin films with rapid thermal annealing process,” J. Mater. Sci. Mater. Electron.21(6), 589–594 (2010).
[CrossRef]

Yang, Y.

Y. Yang, X. Zeng, Y. Zeng, L. Liu, and Q. Chen, “Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications,” Appl. Surf. Sci.257(1), 232–238 (2010).
[CrossRef]

Yong, K.

Y. Tak and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
[CrossRef] [PubMed]

Yoon, K. H.

J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).

Yu, J. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, J. S.

J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3), A258–A268 (2011).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B100(4), 891–896 (2010).
[CrossRef]

Yu, L.

J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, “Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties,” J. Phys. D Appl. Phys.41(13), 135409 (2008).
[CrossRef]

Yu, P.

M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3), A308–A313 (2010).
[CrossRef] [PubMed]

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, W.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10(2), 63–73 (2003).
[CrossRef]

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B21(6), 2874–2877 (2003).
[CrossRef]

Yun, I.

D. Kim, I. Yun, and H. Kim, “Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells,” Curr. Appl. Phys.10(3 S1), S459–S462 (2010).
[CrossRef] [PubMed]

Yun, J. H.

J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).

Zeng, X.

Y. Yang, X. Zeng, Y. Zeng, L. Liu, and Q. Chen, “Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications,” Appl. Surf. Sci.257(1), 232–238 (2010).
[CrossRef]

Zeng, Y.

Y. Yang, X. Zeng, Y. Zeng, L. Liu, and Q. Chen, “Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications,” Appl. Surf. Sci.257(1), 232–238 (2010).
[CrossRef]

Zhang, W.

J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, “Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties,” J. Phys. D Appl. Phys.41(13), 135409 (2008).
[CrossRef]

Zhang, W. J.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev.38(8), 1925–1934 (1991).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Adv. Mater. (1)

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B100(4), 891–896 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface texture by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett.97(19), 191912 (2010).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

Appl. Surf. Sci. (2)

Y. Yang, X. Zeng, Y. Zeng, L. Liu, and Q. Chen, “Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications,” Appl. Surf. Sci.257(1), 232–238 (2010).
[CrossRef]

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci.257(11), 4906–4911 (2011).
[CrossRef]

Curr. Appl. Phys. (1)

D. Kim, I. Yun, and H. Kim, “Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells,” Curr. Appl. Phys.10(3 S1), S459–S462 (2010).
[CrossRef] [PubMed]

IEEE Trans. Electron. Dev. (2)

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev.38(8), 1925–1934 (1991).
[CrossRef]

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev.57(10), 2427–2433 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969).
[CrossRef]

J. Korean Phys. Soc. (1)

J. S. Hur, J. B. Song, J. Kim, D. Byun, C. S. Son, J. H. Yun, and K. H. Yoon, “Efficiencies of CIGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness,” J. Korean Phys. Soc.53(1), 437–441 (2008).

J. Mater. Sci. Mater. Electron. (1)

H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, “Low temperature synthesis of sol–gel derived Al-doped ZnO thin films with rapid thermal annealing process,” J. Mater. Sci. Mater. Electron.21(6), 589–594 (2010).
[CrossRef]

J. Phys. Chem. B (1)

Y. Tak and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, “Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties,” J. Phys. D Appl. Phys.41(13), 135409 (2008).
[CrossRef]

J. Vac. Sci. Technol. B (1)

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B21(6), 2874–2877 (2003).
[CrossRef]

Nano Lett. (4)

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett.8(12), 4191–4195 (2008).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol.4(9), 592–597 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Nature (1)

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature399(6738), 764–766 (1999).
[CrossRef]

Opt. Eng. (1)

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000).
[CrossRef]

Opt. Express (3)

Opt. Rev. (1)

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10(2), 63–73 (2003).
[CrossRef]

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. G. Moharam, “Coupled-wave analysis of two-dimensional gratings,” Proc. SPIE883, 8–11 (1988).

Prog. Photovolt. Res. Appl. (1)

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl.18(3), 195–203 (2010).
[CrossRef]

Scr. Mater. (1)

J. Wang and L. L. Shaw, “Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering,” Scr. Mater.63(6), 593–596 (2010).
[CrossRef]

Semicond. Sci. Technol. (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol.20(4), S35–S44 (2005).
[CrossRef]

Small (2)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Sol. Energy Mater. (1)

S. R. Kurtz and R. G. Gordon, “Transparent conducting electrodes on silicon,” Sol. Energy Mater.15(4), 229–236 (1987).
[CrossRef]

Sol. Energy Mater. Sol. Cells (5)

O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications,” Sol. Energy Mater. Sol. Cells93(8), 1417–1422 (2009).
[CrossRef]

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells94(5), 930–934 (2010).
[CrossRef]

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010).
[CrossRef]

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells85(3), 321–331 (2005).
[CrossRef]

D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics,” Sol. Energy Mater. Sol. Cells81(1), 13–24 (2004).
[CrossRef]

Superlattices Microstruct. (1)

F. Chaabouni, M. Abaab, and B. Rezig, “Characterization of n-ZnO/p-Si films grown by magnetron sputtering,” Superlattices Microstruct.39(1–4), 171–178 (2006).
[CrossRef]

Thin Solid Films (2)

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1–2), 247–253 (1999).
[CrossRef]

T. Mizuta, T. Ishibashi, T. Minemoto, H. Takakura, and Y. Hamakawa, “Chemical deposition of zinc oxide thin films on silicon substrate,” Thin Solid Films515(4), 2458–2463 (2006).
[CrossRef]

Other (1)

B. Thaidigsmann, A. Wolf, and D. Biro, “Accurate determination of the IQE of screen printed silicon solar cells by accounting for the finite reflectance of metal contacts,” Proc. 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 21–25 September (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustrations and SEM images corresponding to process steps for the fabrication of AZO/Si shell/core SWG structures. The oblique-view SEM images are taken at a 30° tilt angle.

Fig. 2
Fig. 2

(a) Schematic illustrations and calculated effective refractive index profiles, (b) calculated reflectance spectra, and (c) contour plots of the calculated incident angle dependent for (i) AZO films/Si substrate and (ii) AZO/Si shell/core SWGs with a 100 nm-thick AZO, respectively. The insets of (b) show a three-dimensional model of the AZO/Si shell/core SWGs with a 6-fold hexagonal symmetry structure and the effective refractive index distribution of the AZO/Si shell/core SWG structure used in this simulation.

Fig. 3
Fig. 3

(a) SEM images and (b) measured reflectance spectra of the AZO/Si shell/core SWG structures with AZO thicknesses of (i) 100 nm, (ii) 200 nm, (iii) 300 nm, and (iv) 500 nm. The insets of (a) and (b) show the cross-sectional SEM images of the corresponding structures and measured reflectance spectra of the AZO films/Si substrate with AZO thicknesses of 100, 200, 300, and 500 nm, respectively. The period of SWGs is 300 nm.

Fig. 4
Fig. 4

(a) Measured reflectance spectra of AZO (200 nm)/Si shell/core SWGs for different periods and (b) influence of the period of AZO (200 nm)/Si shell/core SWGs with a 6-fold hexagonal array on the calculated reflectance as a function of the wavelength. The insets of (a) show the SEM images of the corresponding structures.

Fig. 5
Fig. 5

(a) SEM images of the AZO (200 nm)/Si shell/core SWGs deposited at rf powers of (i) 100 W, (ii) 150 W, and (iii) 200 W. The (iv) of (a) shows the 2θ scan XRD patterns of corresponding structures for different rf powers. (b) Effective resistivity, carrier concentration, and Hall mobility of the AZO film with a 200 nm-thick in AZO/Si shell/core SWGs as a function of rf power.

Fig. 6
Fig. 6

(a) Measured reflectance spectra of the AZO films/Si substrate and AZO/Si shell/core SWG structures with a 200 nm AZO, respectively, deposited at rf powers of 100 W and 200 W and (b) measured angle-dependent reflection spectra of the AZO (200 nm)/Si shell/core SWGs deposited at an rf power of 200 W for the period of 300 nm. The insets of (a) show the photographs of water droplet shapes with contact angles on AZO film/Si substrate and AZO/Si shell/core SWGs with a 200 nm AZO, respectively, deposited at an rf power of 200 W. The insets of (b) show the photographs (left) of AZO film/Si substrate and AZO/Si shell/core SWGs, and the zoom-out SEM image (right) of AZO/Si shell/core SWGs.

Metrics