Abstract

We propose and demonstrate the full-field unsymmetrical beam shaping for decreasing and homogenizing the thermal deformation of optical element in a beam control system. The transformation of square dark hollow beam with unsymmetrical and inhomogeneous intensity distribution into square dark hollow beam with homogeneous intensity distribution is chosen to prove the validity of the technique. Dual deformable mirrors (DMs) based on the stochastic parallel gradient descent (SPGD) controller are used to redistribute the intensity of input beam and generate homogeneous square dark hollow beam with near-diffraction-limited performance. The SPGD algorithm adaptively optimizes the coefficients of Lukosz-Zernike polynomials to form the phase distributions for dual DMs. Based on the finite element method, the thermal deformations of CaF2 half transparent and half reflecting mirror irradiated by high power laser beam before and after beam shaping are numerically simulated and compared. The thermal deformations of the mirror irradiated by the laser beam with different powers and the influences of thermal deformation on beam quality are also numerically studied. Results show that full-field beam shaping can greatly decrease and homogenize the thermal deformation of the mirror in the beam control system. The strehl ratios of the high power laser beams passing through the beam control system can be greatly improved by the full-field beam shaping. The technique presented in this paper can provide effective guidance for optimum design of high power laser cavity and beam shaping system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hauck, H. P. Kortz, and H. Weber, “Misalignment sensitivity of optical resonators,” Appl. Opt. 19(4), 598–601 (1980).
    [CrossRef] [PubMed]
  2. J. L. Remo, “Diffraction losses for symmetrically tilted plane reflectors in open resonators,” Appl. Opt. 19(5), 774–777 (1980).
    [CrossRef] [PubMed]
  3. C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29(4), 343–350 (1990).
    [CrossRef]
  4. C. A. Klein, “Materials for high-power laser optics figures of merit for thermally induced beam distortions,” Opt. Eng. 36(6), 1586–1595 (1997).
    [CrossRef]
  5. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,” Appl. Opt. 40(3), 366–374 (2001).
    [CrossRef] [PubMed]
  6. Y. F. Peng, Z. H. Cheng, Y. N. Zhang, and J. L. Qiu, “Temperature distributions and thermal deformations of mirror substrates in laser resonators,” Appl. Opt. 40(27), 4824–4830 (2001).
    [CrossRef] [PubMed]
  7. J. B. Chen, Z. J. Liu, Z. P. Jiang, Q. S. Lu, Z. W. Zhang, and Y. J. Zhao, “Heating effect of DF laser unstable cavity window and its effect on far-field optical spot,” High Power Laser Part. Beams 6, 243–249 (1994).
  8. Y. Y. Ma, Z. H. Cheng, and Y. N. Zhang, “Finite-element method in thermal deformation analysis of high power laser windows,” High Power Laser Part. Beams 11, 6–10 (1999).
  9. C. A. Klein, “High-energy laser windows: case of fused silica,” Opt. Eng. 49(9), 091006 (2010).
    [CrossRef]
  10. M. S. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42(12), 5029–5046 (1971).
    [CrossRef]
  11. W. P. Wang, F. L. Tan, B. D. Lü, and C. L. Liu, “Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows,” Appl. Opt. 44(34), 7442–7450 (2005).
    [CrossRef] [PubMed]
  12. F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds., Laser Beam Shaping Applications (CRC Press, 2005).
  13. J. M. Auerbach and V. P. Karpenko, “Serrated-aperture apodizers for high-energy laser systems,” Appl. Opt. 33(15), 3179–3183 (1994).
    [CrossRef] [PubMed]
  14. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39(30), 5488–5499 (2000).
    [CrossRef] [PubMed]
  15. J. L. Kreuzer, “Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface,” U.S. patent 3,476,463 (4 November 1969).
  16. J. H. Li, K. J. Webb, G. J. Burke, D. A. White, and C. A. Thompson, “Design of near-field irregular diffractive optical elements by use of a multiresolution direct binary search method,” Opt. Lett. 31(9), 1181–1183 (2006).
    [CrossRef] [PubMed]
  17. G. Zhou, X. Yuan, P. Dowd, Y. L. Lam, and Y. C. Chan, “Design of diffractive phase elements for beam shaping: hybrid approach,” J. Opt. Soc. Am. A 18(4), 791–800 (2001).
    [CrossRef]
  18. H. T. Ma, Z. J. Liu, X. J. Xu, S. H. Wang, and C. H. Liu, “Near-diffraction-limited flattop laser beam adaptively generated by stochastic parallel gradient descent algorithm,” Opt. Lett. 35(17), 2973–2975 (2010).
    [CrossRef] [PubMed]
  19. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15(10), 2745–2758 (1998).
    [CrossRef]
  20. D. D’ebarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15(13), 8176–8190 (2007).
    [CrossRef]
  21. O. Braat, “Polynomial expansion of severely aberrated wave fronts,” J. Opt. Soc. Am. A 4(4), 643–650 (1987).
    [CrossRef]
  22. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32(1), 5–7 (2007).
    [CrossRef] [PubMed]
  23. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64(9), 1200–1210 (1974).
    [CrossRef]
  24. J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook (Phlogiston Press, 2005).
  25. H. G. Wang, Conspectus of Thermo-Elasticity (Qinghua University Press, 1989).
  26. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

2010 (2)

2007 (2)

2006 (1)

2005 (1)

2001 (3)

2000 (1)

1999 (1)

Y. Y. Ma, Z. H. Cheng, and Y. N. Zhang, “Finite-element method in thermal deformation analysis of high power laser windows,” High Power Laser Part. Beams 11, 6–10 (1999).

1998 (1)

1997 (1)

C. A. Klein, “Materials for high-power laser optics figures of merit for thermally induced beam distortions,” Opt. Eng. 36(6), 1586–1595 (1997).
[CrossRef]

1994 (2)

J. B. Chen, Z. J. Liu, Z. P. Jiang, Q. S. Lu, Z. W. Zhang, and Y. J. Zhao, “Heating effect of DF laser unstable cavity window and its effect on far-field optical spot,” High Power Laser Part. Beams 6, 243–249 (1994).

J. M. Auerbach and V. P. Karpenko, “Serrated-aperture apodizers for high-energy laser systems,” Appl. Opt. 33(15), 3179–3183 (1994).
[CrossRef] [PubMed]

1990 (1)

C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29(4), 343–350 (1990).
[CrossRef]

1987 (1)

1980 (2)

1974 (1)

1971 (1)

M. S. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42(12), 5029–5046 (1971).
[CrossRef]

Auerbach, J. M.

Booth, M. J.

Braat, O.

Buffington, A.

Burke, G. J.

Byer, R. L.

Chan, Y. C.

Chen, J. B.

J. B. Chen, Z. J. Liu, Z. P. Jiang, Q. S. Lu, Z. W. Zhang, and Y. J. Zhao, “Heating effect of DF laser unstable cavity window and its effect on far-field optical spot,” High Power Laser Part. Beams 6, 243–249 (1994).

Cheng, Z. H.

Y. F. Peng, Z. H. Cheng, Y. N. Zhang, and J. L. Qiu, “Temperature distributions and thermal deformations of mirror substrates in laser resonators,” Appl. Opt. 40(27), 4824–4830 (2001).
[CrossRef] [PubMed]

Y. Y. Ma, Z. H. Cheng, and Y. N. Zhang, “Finite-element method in thermal deformation analysis of high power laser windows,” High Power Laser Part. Beams 11, 6–10 (1999).

Clubley, D.

D’ebarre, D.

Dowd, P.

Fejer, M. M.

Gustafson, E. K.

Hauck, R.

Hennawi, J.

Hoffnagle, J. A.

Jefferson, C. M.

Jiang, Z. P.

J. B. Chen, Z. J. Liu, Z. P. Jiang, Q. S. Lu, Z. W. Zhang, and Y. J. Zhao, “Heating effect of DF laser unstable cavity window and its effect on far-field optical spot,” High Power Laser Part. Beams 6, 243–249 (1994).

Karpenko, V. P.

Klein, C. A.

C. A. Klein, “High-energy laser windows: case of fused silica,” Opt. Eng. 49(9), 091006 (2010).
[CrossRef]

C. A. Klein, “Materials for high-power laser optics figures of merit for thermally induced beam distortions,” Opt. Eng. 36(6), 1586–1595 (1997).
[CrossRef]

C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29(4), 343–350 (1990).
[CrossRef]

Kortz, H. P.

Lam, Y. L.

Li, J. H.

Liu, C. H.

Liu, C. L.

Liu, Z. J.

H. T. Ma, Z. J. Liu, X. J. Xu, S. H. Wang, and C. H. Liu, “Near-diffraction-limited flattop laser beam adaptively generated by stochastic parallel gradient descent algorithm,” Opt. Lett. 35(17), 2973–2975 (2010).
[CrossRef] [PubMed]

J. B. Chen, Z. J. Liu, Z. P. Jiang, Q. S. Lu, Z. W. Zhang, and Y. J. Zhao, “Heating effect of DF laser unstable cavity window and its effect on far-field optical spot,” High Power Laser Part. Beams 6, 243–249 (1994).

Lu, Q. S.

J. B. Chen, Z. J. Liu, Z. P. Jiang, Q. S. Lu, Z. W. Zhang, and Y. J. Zhao, “Heating effect of DF laser unstable cavity window and its effect on far-field optical spot,” High Power Laser Part. Beams 6, 243–249 (1994).

Lü, B. D.

Ma, H. T.

Ma, Y. Y.

Y. Y. Ma, Z. H. Cheng, and Y. N. Zhang, “Finite-element method in thermal deformation analysis of high power laser windows,” High Power Laser Part. Beams 11, 6–10 (1999).

Mansell, J. D.

Muller, R. A.

Peng, Y. F.

Qiu, J. L.

Reitze, D. H.

Remo, J. L.

Sivokon, V. P.

Sparks, M. S.

M. S. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42(12), 5029–5046 (1971).
[CrossRef]

Tan, F. L.

Thompson, C. A.

Vorontsov, M. A.

Wang, S. H.

Wang, W. P.

Webb, K. J.

Weber, H.

White, D. A.

Wilson, T.

Xu, X. J.

Yoshida, S.

Yuan, X.

Zhang, Y. N.

Y. F. Peng, Z. H. Cheng, Y. N. Zhang, and J. L. Qiu, “Temperature distributions and thermal deformations of mirror substrates in laser resonators,” Appl. Opt. 40(27), 4824–4830 (2001).
[CrossRef] [PubMed]

Y. Y. Ma, Z. H. Cheng, and Y. N. Zhang, “Finite-element method in thermal deformation analysis of high power laser windows,” High Power Laser Part. Beams 11, 6–10 (1999).

Zhang, Z. W.

J. B. Chen, Z. J. Liu, Z. P. Jiang, Q. S. Lu, Z. W. Zhang, and Y. J. Zhao, “Heating effect of DF laser unstable cavity window and its effect on far-field optical spot,” High Power Laser Part. Beams 6, 243–249 (1994).

Zhao, Y. J.

J. B. Chen, Z. J. Liu, Z. P. Jiang, Q. S. Lu, Z. W. Zhang, and Y. J. Zhao, “Heating effect of DF laser unstable cavity window and its effect on far-field optical spot,” High Power Laser Part. Beams 6, 243–249 (1994).

Zhou, G.

Appl. Opt. (7)

High Power Laser Part. Beams (2)

J. B. Chen, Z. J. Liu, Z. P. Jiang, Q. S. Lu, Z. W. Zhang, and Y. J. Zhao, “Heating effect of DF laser unstable cavity window and its effect on far-field optical spot,” High Power Laser Part. Beams 6, 243–249 (1994).

Y. Y. Ma, Z. H. Cheng, and Y. N. Zhang, “Finite-element method in thermal deformation analysis of high power laser windows,” High Power Laser Part. Beams 11, 6–10 (1999).

J. Appl. Phys. (1)

M. S. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42(12), 5029–5046 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Opt. Eng. (3)

C. A. Klein, “High-energy laser windows: case of fused silica,” Opt. Eng. 49(9), 091006 (2010).
[CrossRef]

C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29(4), 343–350 (1990).
[CrossRef]

C. A. Klein, “Materials for high-power laser optics figures of merit for thermally induced beam distortions,” Opt. Eng. 36(6), 1586–1595 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (5)

F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds., Laser Beam Shaping Applications (CRC Press, 2005).

J. L. Kreuzer, “Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface,” U.S. patent 3,476,463 (4 November 1969).

J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook (Phlogiston Press, 2005).

H. G. Wang, Conspectus of Thermo-Elasticity (Qinghua University Press, 1989).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Configuration of the adaptive full-field beam shaping system based on SPGD algorithm.

Fig. 2
Fig. 2

Intensity distributions of the input and target beam, (a) input beam, (b) target beam.

Fig. 3
Fig. 3

Shaping results for square dark hollow flattop beam, (a) intensity distribution of the output beam, (b) corresponding evolutions of the relative Jfiterror as the algorithm proceeds.

Fig. 4
Fig. 4

Phase distributions generated for intensity redistribution and wave front compensation (the unit is radian). (a) for intensity redistribution, (b) for wave front compensation.

Fig. 5
Fig. 5

Far field intensity distribution of the output beam before and after phase compensation, (a) before phase compensation, (b) after phase compensation.

Fig. 6
Fig. 6

Phase distribution of the output beam after being compensated and the PIB curve, (a) phase distribution (the unit is radian), (b) PIB curve.

Fig. 7
Fig. 7

Illustration of a half transparent and half reflecting mirror with high power laser beam irradiating.

Fig. 8
Fig. 8

Power density distribution of the 150kW high power laser beam (the unit is W/m 2), (a) before beam shaping, (b) after beam shaping.

Fig. 9
Fig. 9

Thermal deformation of the half transparent and half reflecting mirror irradiated by the high power laser beam without and with beam shaping, when the power is 50kW, 100kW and 150k (the unit is m), the irradiation time is 5s. (a) before beam shaping, (b) after beam shaping.

Fig. 10
Fig. 10

Change of the thermal deformation of position a and position b of half transparent and half reflecting mirror along with the irradiation time. (a) Irradiated by 50kW high power laser beam, (b) Irradiated by 100kW high power laser beam, (c) Irradiated by 150kW high power laser beam.

Fig. 11
Fig. 11

Change of PV and rms value of thermal deformation of half transparent and half reflective mirror along with irradiation time. (a) with 50kW power, (b) with 100kW power, (c) with 150kW power.

Fig. 12
Fig. 12

Far field intensity distribution of the 50kW power laser beam after being reflected by the half transparent and half reflecting mirror (the unit is W/m 2), the irradiation time is 6s, (a) with beam shaping, (b) without beam shaping.

Tables (1)

Tables Icon

Table1 Properties of the CaF2 Mirror (at 293K)

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ϕ j ( r , θ ) = i = 2 N a i L i ( r , θ )
L n m ( r , θ ) = B n m ( r ) × { cos ( m θ )       m 0 sin ( m θ )       m < 0 ,
B n m ( r ) = { 1 n [ R n 0 ( r ) R n 2 0 ( r ) ]         n m = 0 2 n [ R n m ( r ) R n 2 m ( r ) ]       n m 0 2 n R n n ( r )                                           m = n 0 1                                                                     m = n = 0 .
R n m ( r ) = k = 0 n m 2 ( 1 ) k ( n k ) ! r n 2 k k ! ( n + m 2 k ) ! ( n m 2 k ) ! .
J f i t e r r o r = x y [ I a c t u a l ( x , y ) I t arg e t ( x , y ) ] 2 .
J c o m p e n s a t i o n = I f a r f i e l d ( x , y ) 2 d x d y ,
I t arg e t = exp { [ a 1 ( x x o ) 2 p 1 ] [ b 1 ( y y o ) 2 q 1 ] } exp { [ a 2 ( x x o ) 2 p 2 ] [ b 2 ( y y o ) 2 q 2 ] } ,
2 T ( r , φ , z ; t ) + q κ = 1 α T ( r , φ , z ; t ) t .
T ( r , φ , z ; t ) r | r = r 0 = h κ ( T T ) ,
T ( r , φ , z ; t ) z | z = 0 = h κ ( T T ) ,
T ( r , φ , z ; t ) z | z = d = q ( r , φ ; t ) ,
T ( r , φ , z ; t ) | t = 0 = T ,
2 u r u r r 2 + 1 1 2 ν ε r 2 ( 1 + ν ) 1 2 ν α l T r = 0 ,
2 u z + 1 1 2 ν ε z 2 ( 1 + ν ) 1 2 ν α l T z = 0.
u r | r = r 0 = u z | r = r 0 = 0 ,
D P V = D max D min ,
D r m s = n = 1 M [ D ( n ) n = 1 M D ( n ) / M ] 2 M ,
Δ ϕ ( r , φ ) = k 2 u z ( r , φ ) cos θ ,

Metrics