Abstract

We report three-dimensional modelling of plasmonic solar cells in which electromagnetic simulation is directly linked to carrier transport calculations. To date, descriptions of plasmonic solar cells have only involved electromagnetic modelling without realistic assumptions about carrier transport, and we found that this leads to considerable discrepancies in behaviour particularly for devices based on materials with low carrier mobility. Enhanced light absorption and improved electronic response arising from plasmonic nanoparticle arrays on the solar cell surface are observed, in good agreement with previous experiments. The complete three-dimensional modelling provides a means to design plasmonic solar cells accurately with a thorough understanding of the plasmonic interaction with a photovoltaic device.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  3. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
    [CrossRef] [PubMed]
  4. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
    [CrossRef] [PubMed]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [CrossRef]
  6. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  7. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
    [CrossRef] [PubMed]
  8. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
    [CrossRef] [PubMed]
  9. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
    [CrossRef]
  10. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  11. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
    [CrossRef]
  12. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [CrossRef]
  13. X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
    [CrossRef]
  14. O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells 37(3-4), 337–348 (1995).
    [CrossRef]
  15. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
    [CrossRef]
  16. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
    [CrossRef] [PubMed]
  17. J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express 18(Suppl 2), A139–A146 (2010).
    [CrossRef] [PubMed]
  18. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [CrossRef]
  19. W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
    [CrossRef] [PubMed]
  20. C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
    [CrossRef] [PubMed]
  21. J. N. Munday, and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett., (2010), http://dx.doi.org/10.1021/nl101875t.
  22. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
    [CrossRef]
  23. J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89(15), 153120 (2006).
    [CrossRef]
  24. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [CrossRef] [PubMed]
  25. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
    [CrossRef]
  26. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).
  27. Comsol Multiphysics, http://www.comsol.com/
  28. G. A. Swartz, “Computer model of amorphous silicon solar cell,” J. Appl. Phys. 53(1), 712–719 (1982).
    [CrossRef]
  29. J. R. Lowney and H. S. Bennett, “Majority and minority electron and hole mobilities in heavily doped GaAs,” J. Appl. Phys. 69(10), 7102–7110 (1991).
    [CrossRef]
  30. H. S. Bennett, “Majority and minority electron and hole mobilities in heavily doped gallium aluminum arsenide,” J. Appl. Phys. 80(7), 3844–3853 (1996).
    [CrossRef]
  31. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−x As,” J. Appl. Phys. 60(2), 754–767 (1986).
    [CrossRef]
  32. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1985).
  33. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [CrossRef]
  34. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(Suppl 2), A146–A156 (2011).
    [CrossRef] [PubMed]
  35. G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
    [CrossRef]
  36. J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
    [CrossRef]
  37. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
    [CrossRef] [PubMed]

2011

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

2010

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express 18(Suppl 2), A139–A146 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

2009

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

2008

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

2007

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

2006

J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89(15), 153120 (2006).
[CrossRef]

2005

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

2004

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

2001

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

1996

H. S. Bennett, “Majority and minority electron and hole mobilities in heavily doped gallium aluminum arsenide,” J. Appl. Phys. 80(7), 3844–3853 (1996).
[CrossRef]

1995

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells 37(3-4), 337–348 (1995).
[CrossRef]

1991

J. R. Lowney and H. S. Bennett, “Majority and minority electron and hole mobilities in heavily doped GaAs,” J. Appl. Phys. 69(10), 7102–7110 (1991).
[CrossRef]

1986

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−x As,” J. Appl. Phys. 60(2), 754–767 (1986).
[CrossRef]

1982

G. A. Swartz, “Computer model of amorphous silicon solar cell,” J. Appl. Phys. 53(1), 712–719 (1982).
[CrossRef]

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Apell, S. P.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[CrossRef] [PubMed]

Aspnes, D. E.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−x As,” J. Appl. Phys. 60(2), 754–767 (1986).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Bao, K.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[CrossRef] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Beck, F. J.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Bennett, H. S.

H. S. Bennett, “Majority and minority electron and hole mobilities in heavily doped gallium aluminum arsenide,” J. Appl. Phys. 80(7), 3844–3853 (1996).
[CrossRef]

J. R. Lowney and H. S. Bennett, “Majority and minority electron and hole mobilities in heavily doped GaAs,” J. Appl. Phys. 69(10), 7102–7110 (1991).
[CrossRef]

Bhat, R.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−x As,” J. Appl. Phys. 60(2), 754–767 (1986).
[CrossRef]

Black, L.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Bucher, C.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Catchpole, K. R.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Chen, S. C.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Chen, X. H.

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

Chou, W. C.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Cole, J. R.

J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89(15), 153120 (2006).
[CrossRef]

de Waele, R.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Derkacs, D.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Fay, S.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Fernández-García, R.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Ferry, V. E.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Hägglund, C.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[CrossRef] [PubMed]

Halas, N. J.

J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89(15), 153120 (2006).
[CrossRef]

Hebbink, M.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Hillenbrand, R.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Hsu, C. L.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Hsu, I. J.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Huber, A. J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Johansson, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[CrossRef] [PubMed]

Käll, M.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Kasemo, B.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Keilmann, F.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Kelso, S. M.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−x As,” J. Appl. Phys. 60(2), 754–767 (1986).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Kroll, U.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Lee, J. Y.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Lee, Y. C.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Lenzmann, F.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Liao, W. C.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Lim, S. H.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Logan, R. A.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−x As,” J. Appl. Phys. 60(2), 754–767 (1986).
[CrossRef]

Lowney, J. R.

J. R. Lowney and H. S. Bennett, “Majority and minority electron and hole mobilities in heavily doped GaAs,” J. Appl. Phys. 69(10), 7102–7110 (1991).
[CrossRef]

Lu, Y. L.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Matheu, P.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

McPheeters, C.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

Meier, J.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Miljkovic, V. D.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[CrossRef] [PubMed]

Mokkapati, S.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Moriarty, T.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Munday, J. N.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Nagel, J. R.

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Ng, M. K.

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

Nordlander, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[CrossRef] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Polman, A.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Reinhardt, K.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Roschuk, T.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Rothberg, L.

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

Scarpulla, M. A.

Schatz, G. C.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Shah, A.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Shegai, T.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[CrossRef] [PubMed]

Shen, J. L.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Shu, G. W.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Sonnefraud, Y.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Spinelli, P.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Spitznagel, J.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Stendal, A.

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells 37(3-4), 337–348 (1995).
[CrossRef]

Stenzel, O.

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells 37(3-4), 337–348 (1995).
[CrossRef]

Swartz, G. A.

G. A. Swartz, “Computer model of amorphous silicon solar cell,” J. Appl. Phys. 53(1), 712–719 (1982).
[CrossRef]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Van Duyne, R. P.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Verhagen, E.

Voigtsberger, K.

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells 37(3-4), 337–348 (1995).
[CrossRef]

von Borczyskowski, C.

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells 37(3-4), 337–348 (1995).
[CrossRef]

Wang, W.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Wittborn, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Wu, C. H.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Wu, S. M.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Xu, H.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[CrossRef] [PubMed]

Yang, M. D.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Yu, E. T.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Zhao, C. C.

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Adv. Mater.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Adv. Sci. Lett.

G. W. Shu, W. C. Liao, C. L. Hsu, J. Y. Lee, I. J. Hsu, J. L. Shen, M. D. Yang, C. H. Wu, Y. C. Lee, and W. C. Chou, “Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles,” Adv. Sci. Lett. 3, 368–372 (2010).
[CrossRef]

Appl. Phys. Lett.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89(15), 153120 (2006).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett. 93(12), 123302 (2008).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

J. Appl. Phys.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

G. A. Swartz, “Computer model of amorphous silicon solar cell,” J. Appl. Phys. 53(1), 712–719 (1982).
[CrossRef]

J. R. Lowney and H. S. Bennett, “Majority and minority electron and hole mobilities in heavily doped GaAs,” J. Appl. Phys. 69(10), 7102–7110 (1991).
[CrossRef]

H. S. Bennett, “Majority and minority electron and hole mobilities in heavily doped gallium aluminum arsenide,” J. Appl. Phys. 80(7), 3844–3853 (1996).
[CrossRef]

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−x As,” J. Appl. Phys. 60(2), 754–767 (1986).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Nano Lett.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[CrossRef] [PubMed]

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Opt. Express

Small

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells 37(3-4), 337–348 (1995).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Thin Solid Films

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Other

J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).

Comsol Multiphysics, http://www.comsol.com/

E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1985).

J. N. Munday, and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett., (2010), http://dx.doi.org/10.1021/nl101875t.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) and (b): schematic diagrams of the considered GaAs- and α-Si:H SCs; (c) and (d): current densities from solar incidence and those generated from the SCs; (e) and (f): EQE and IQE response of the SCs. (a), (c) and (e) [(b), (d) and (f)] are for GaAs (α-Si:H) SCs. The results obtained under ICT assumption are plotted with dashed curves. The observed peaks between 550 nm and 800 nm for α-Si:H SCs are due to Fabry-Perot interference in the cavity.

Fig. 2
Fig. 2

Schematic diagram (a) [(b)], EQE response (c) [(d)] and I-V curves (e) [(f)] of GaAs [α-Si:H] SCs before (dashed) and after (solid) the proposed plasmonic design with 160nm-diameter silver particles under period of 400 nm. Solid and dot curves are from complete calculation and optical estimation under ICT assumption, respectively. Power densities are also plotted in (e) and (f) so that the detailed information about Jsc , Voc , Pmax , FF, and η can be obtained. The performance enhancement is observed from these figures and the extracted performance parameters are listed in Table 2.

Fig. 3
Fig. 3

Power flow distributions in the plasmonic α-Si:H SCs with 160nm-diameter silver nanoparticles decorated above. In (a1) and (a2), λ = 350 nm (in photocurrent loss region) and in (b1), (b2), and (b3) λ = 500 nm (in photocurrent gain region). In (b3), field polarizations are also given.

Fig. 4
Fig. 4

Distributions of carrier generation rate [(a1) & (a2)], electron concentration [(b1) & (b2)], and hole concentration [(c1) & (c2)] inside the active layers of α-Si:H PSCs working at λ = 500 nm (in photocurrent gain region). Active layer configuration has been shown in Figs. 1(b) and 3(a1).

Tables (2)

Tables Icon

Table 1 Key Parameters Used in the Simulation [23,2529].

Tables Icon

Table 2 Performance Comparison under Various System Configurations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ D n n + n μ n ( Φ + χ q + k B T q ln N c ) ] = g ( x , y , z , λ ) U ,
[ D p p p μ p ( Φ + χ q + E g q k B T q ln N v ) ] = g ( x , y , z , λ ) U ,
2 Φ = q ε ( n p C ) ,
j s c ( λ ) = 1 Λ 2 Λ / 2 Λ / 2 Λ / 2 Λ / 2 | j n ( x , y , L , λ ) + j p ( x , y , L , λ ) | d x d y ,
J ( V ) = J s c J d ( V ) V + J ( V ) R s R s h ,

Metrics