Abstract

The Lambertian limit for solar cells is a benchmark for evaluating their efficiency. It has been shown that the performance of either extremely thick or extremely thin solar cells can be driven close to this limit by using an appropriate photon management. Here we show that this is likewise possible for realistic, practically relevant thin-film solar cells based on amorphous silicon. Most importantly, we achieve this goal by relying on random textures already incorporated into state-of-the-art superstrates; with the only subtlety that their topology has to be downscaled to typical feature sizes of about 100 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Könenkamp, S. Muramatsu, H. Itoh, S. Matsubara, and T. Shimada, “Mobility-lifetime product in hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 29, L2155–L2158 (1990).
    [CrossRef]
  2. H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, “Mobility-lifetime product and interface property in amorphous silicon solar cells,” J. Appl. Phys. 54, 3236–3243 (1983).
    [CrossRef]
  3. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
    [CrossRef]
  4. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
    [CrossRef]
  5. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008).
    [CrossRef]
  6. J. Grandidier, D. M. Callahan, N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Adv. Mater. 23, 5 (2011).
  7. C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
    [CrossRef]
  8. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
    [CrossRef] [PubMed]
  9. J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
    [CrossRef]
  10. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
    [CrossRef]
  11. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–10205 (2009).
    [CrossRef] [PubMed]
  12. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. (1917–1983) 72, 899–907 (1982).
    [CrossRef]
  13. P. Campbell, “Enhancement of light absorption from randomizing and geometric textures,” J. Opt. Soc. Am. B 10, 2410–2415 (1993).
    [CrossRef]
  14. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
    [CrossRef]
  15. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
    [CrossRef] [PubMed]
  16. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovoltaics 19(4), 473–477 (2010).
    [CrossRef]
  17. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
    [CrossRef] [PubMed]
  18. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
    [CrossRef]
  19. S. Nicolay, M. Despeisse, F. J. Haug, and B. Ballif, “Control of LPCVD ZnO growth modes for improved light trapping in thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 1031–1034 (2011).
    [CrossRef]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  21. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
    [CrossRef]
  22. M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
    [CrossRef]
  23. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
    [CrossRef] [PubMed]
  24. J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90, 142107 (2007).
    [CrossRef]
  25. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
    [CrossRef]
  26. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584–586 (1983).
    [CrossRef] [PubMed]
  27. M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, “10% Efficient CSG minimodules,” Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan (2007).
  28. K. Bittkau, R. Carius, and C. Lienau, “Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical microscopy,” Phys. Rev. B 76, 035330 (2007).
    [CrossRef]
  29. C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
    [CrossRef]
  30. ASTM Standard G173-03, URL: http://www.astm.org
  31. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10, 235–241 (2002).
    [CrossRef]
  32. C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
    [CrossRef] [PubMed]

2011 (3)

J. Grandidier, D. M. Callahan, N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Adv. Mater. 23, 5 (2011).

S. Nicolay, M. Despeisse, F. J. Haug, and B. Ballif, “Control of LPCVD ZnO growth modes for improved light trapping in thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 1031–1034 (2011).
[CrossRef]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

2010 (5)

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[CrossRef] [PubMed]

M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovoltaics 19(4), 473–477 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

2009 (2)

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–10205 (2009).
[CrossRef] [PubMed]

2008 (3)

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008).
[CrossRef]

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

2007 (4)

J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90, 142107 (2007).
[CrossRef]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

K. Bittkau, R. Carius, and C. Lienau, “Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical microscopy,” Phys. Rev. B 76, 035330 (2007).
[CrossRef]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

2004 (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

2002 (1)

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10, 235–241 (2002).
[CrossRef]

2000 (2)

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

1999 (1)

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

1995 (1)

1993 (1)

1990 (1)

R. Könenkamp, S. Muramatsu, H. Itoh, S. Matsubara, and T. Shimada, “Mobility-lifetime product in hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 29, L2155–L2158 (1990).
[CrossRef]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

1983 (2)

H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, “Mobility-lifetime product and interface property in amorphous silicon solar cells,” J. Appl. Phys. 54, 3236–3243 (1983).
[CrossRef]

W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584–586 (1983).
[CrossRef] [PubMed]

1982 (1)

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. (1917–1983) 72, 899–907 (1982).
[CrossRef]

1977 (1)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
[CrossRef]

Akimov, Y. A.

Atwater, H. A.

J. Grandidier, D. M. Callahan, N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Adv. Mater. 23, 5 (2011).

Ballif, B.

S. Nicolay, M. Despeisse, F. J. Haug, and B. Ballif, “Control of LPCVD ZnO growth modes for improved light trapping in thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 1031–1034 (2011).
[CrossRef]

Ballif, C.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90, 142107 (2007).
[CrossRef]

Barraud, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Battaglia, C.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Beckers, T.

Beneking, C.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Berginski, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Billet, A.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Bittkau, K.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

K. Bittkau, R. Carius, and C. Lienau, “Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical microscopy,” Phys. Rev. B 76, 035330 (2007).
[CrossRef]

Boccard, M.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Bugnon, G.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Callahan, D. M.

J. Grandidier, D. M. Callahan, N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Adv. Mater. 23, 5 (2011).

Campbell, P.

P. Campbell, “Enhancement of light absorption from randomizing and geometric textures,” J. Opt. Soc. Am. B 10, 2410–2415 (1993).
[CrossRef]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

Cao, L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Carius, R.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

K. Bittkau, R. Carius, and C. Lienau, “Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical microscopy,” Phys. Rev. B 76, 035330 (2007).
[CrossRef]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[CrossRef] [PubMed]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

de Wolf, S.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Despeisse, M.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

S. Nicolay, M. Despeisse, F. J. Haug, and B. Ballif, “Control of LPCVD ZnO growth modes for improved light trapping in thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 1031–1034 (2011).
[CrossRef]

Ding, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Erni, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Escarré, J.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Fahr, S.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008).
[CrossRef]

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Faÿ, S.

J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90, 142107 (2007).
[CrossRef]

Finger, F.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Fukumoto, K.

H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, “Mobility-lifetime product and interface property in amorphous silicon solar cells,” J. Appl. Phys. 54, 3236–3243 (1983).
[CrossRef]

Gaylord, T. K.

Gombert, A.

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

Grandidier, J.

J. Grandidier, D. M. Callahan, N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Adv. Mater. 23, 5 (2011).

Grann, E. B.

Green, M. A.

M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovoltaics 19(4), 473–477 (2010).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10, 235–241 (2002).
[CrossRef]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

Hamakawa, Y.

H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, “Mobility-lifetime product and interface property in amorphous silicon solar cells,” J. Appl. Phys. 54, 3236–3243 (1983).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[CrossRef] [PubMed]

Hapke, P.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Haug, F.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Haug, F. J.

S. Nicolay, M. Despeisse, F. J. Haug, and B. Ballif, “Control of LPCVD ZnO growth modes for improved light trapping in thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 1031–1034 (2011).
[CrossRef]

Haug, F.-J.

Helgert, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008).
[CrossRef]

Houben, L.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Hsu, C.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Hüpkes, J.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Itoh, H.

R. Könenkamp, S. Muramatsu, H. Itoh, S. Matsubara, and T. Shimada, “Mobility-lifetime product in hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 29, L2155–L2158 (1990).
[CrossRef]

Kida, H.

H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, “Mobility-lifetime product and interface property in amorphous silicon solar cells,” J. Appl. Phys. 54, 3236–3243 (1983).
[CrossRef]

Kirchartz, T.

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

Kluth, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Koh, W. S.

Könenkamp, R.

R. Könenkamp, S. Muramatsu, H. Itoh, S. Matsubara, and T. Shimada, “Mobility-lifetime product in hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 29, L2155–L2158 (1990).
[CrossRef]

Kroll, M.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008).
[CrossRef]

Lambertz, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Lederer, F.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

Lienau, C.

K. Bittkau, R. Carius, and C. Lienau, “Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical microscopy,” Phys. Rev. B 76, 035330 (2007).
[CrossRef]

Löffl, A.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Matsubara, S.

R. Könenkamp, S. Muramatsu, H. Itoh, S. Matsubara, and T. Shimada, “Mobility-lifetime product in hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 29, L2155–L2158 (1990).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Metselaar, J. W.

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

Moharam, M. G.

Mück, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

Munday, N.

J. Grandidier, D. M. Callahan, N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Adv. Mater. 23, 5 (2011).

Muramatsu, S.

R. Könenkamp, S. Muramatsu, H. Itoh, S. Matsubara, and T. Shimada, “Mobility-lifetime product in hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 29, L2155–L2158 (1990).
[CrossRef]

Nicolay, S.

S. Nicolay, M. Despeisse, F. J. Haug, and B. Ballif, “Control of LPCVD ZnO growth modes for improved light trapping in thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 1031–1034 (2011).
[CrossRef]

Nonomura, S.

H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, “Mobility-lifetime product and interface property in amorphous silicon solar cells,” J. Appl. Phys. 54, 3236–3243 (1983).
[CrossRef]

Okamoto, H.

H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, “Mobility-lifetime product and interface property in amorphous silicon solar cells,” J. Appl. Phys. 54, 3236–3243 (1983).
[CrossRef]

Oliveira, N.

J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90, 142107 (2007).
[CrossRef]

Ostrikov, K.

Pertsch, T.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008).
[CrossRef]

Peters, M.

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

Pommet, D. A.

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Rau, U.

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

Rech, B.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008).
[CrossRef]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

Schock, H. W.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Schöpe, G.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Schropp, R. E. I.

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Schulte, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Shimada, T.

R. Könenkamp, S. Muramatsu, H. Itoh, S. Matsubara, and T. Shimada, “Mobility-lifetime product in hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 29, L2155–L2158 (1990).
[CrossRef]

Söderström, K.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Söderström, T.

Southwell, W. H.

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
[CrossRef]

Steinhauser, J.

J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90, 142107 (2007).
[CrossRef]

Stiebig, H.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Ulbrich, C.

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

Üpping, J.

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

Vallat-Sauvain, E.

J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90, 142107 (2007).
[CrossRef]

van Swaaij, R. A. C. M. M.

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Vetterl, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Wagner, H.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Wehrspohn, R.

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Wieder, S.

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
[CrossRef]

Wuttig, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. (1917–1983) 72, 899–907 (1982).
[CrossRef]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Zeman, M.

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

Adv. Mater. (1)

J. Grandidier, D. M. Callahan, N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Adv. Mater. 23, 5 (2011).

Appl. Phys. Lett. (3)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
[CrossRef]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90, 142107 (2007).
[CrossRef]

J. Appl. Phys. (5)

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, “Mobility-lifetime product and interface property in amorphous silicon solar cells,” J. Appl. Phys. 54, 3236–3243 (1983).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. (1917–1983) 72, 899–907 (1982).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

R. Könenkamp, S. Muramatsu, H. Itoh, S. Matsubara, and T. Shimada, “Mobility-lifetime product in hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 29, L2155–L2158 (1990).
[CrossRef]

Nano Lett. (3)

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[CrossRef]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Nano Letters (1)

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

K. Bittkau, R. Carius, and C. Lienau, “Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical microscopy,” Phys. Rev. B 76, 035330 (2007).
[CrossRef]

Phys. Status Solidi A (2)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008).
[CrossRef]

C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Prog. Photovoltaics (2)

M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovoltaics 19(4), 473–477 (2010).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10, 235–241 (2002).
[CrossRef]

Sol. Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

S. Nicolay, M. Despeisse, F. J. Haug, and B. Ballif, “Control of LPCVD ZnO growth modes for improved light trapping in thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 1031–1034 (2011).
[CrossRef]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Thin Solid Films (1)

O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999).
[CrossRef]

Other (2)

M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, “10% Efficient CSG minimodules,” Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan (2007).

ASTM Standard G173-03, URL: http://www.astm.org

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Three-dimensional schematic of the solar cell under consideration. A 250 nm thick aSi:H-layer is conformally deposited between textured ZnO. The cell is finalized by a glass superstrate at the top and a perfect reflector at the bottom. Topographies in nm of the investigated textures correspond to superstrates fabricated in Neuchâtel (b), at Asahi (c) and in Jülich (d). The blue scale bars represent 1 μm.

Fig. 2
Fig. 2

Absorptance spectra of the considered solar cell for varying lateral scaling factors f scal.

Fig. 3
Fig. 3

Absorptance at several wavelengths versus the lateral scaling factor.

Fig. 4
Fig. 4

Short circuit current density of the considered solar cell for varying lateral scaling factors f scal. The black horizontal line depicts the Lambertian limit for a reflection loss of 2.0%.

Fig. 5
Fig. 5

Short circuit current density of the considered solar cell for a varying modulation height of the texture. The black horizontal line depicts the Lambertian limit for a reflection loss at the glass/ZnO-interface of ≈2.0%.

Fig. 6
Fig. 6

Calculated absorptance spectra for optimized lateral scaling factors for the different superstrates. The black curve depicts the Lambertian limit assuming a reflection loss at the glass/ZnO-interface of ≈2.0%. The dotted curves are calculated for the unscaled textures.

Tables (1)

Tables Icon

Table 1 Parameters of Optimized Textures Discussed in this Paper

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( λ ) = 0.98 ( 1 exp [ 4 α ( λ ) d ] ) 1 [ 1 1.5 2 / n ( λ ) 2 ] exp [ 4 α ( λ ) d ] ,

Metrics