Abstract

Through femtosecond laser irradiation, we produce in this work a unique type of surface nanostructure on Al that have enhanced absorption at UV and visible but a relatively small emissivity in infrared. By integrating this laser-treated Al to a solar-driven thermoelectric generator, we show that the thermoelectric generator integrated with the femtosecond laser-treated Al foil generates a significantly higher power than the ones without. Our study shows that our technique can dramatically enhance the efficiency of solar-driven thermoelectric devices that may lead to a leap forward in solar energy harnessing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Xie and D. M. Gruen, “Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies,” J. Phys. Chem. B 114(45), 14339–14342 (2010).
    [CrossRef] [PubMed]
  2. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
    [CrossRef] [PubMed]
  3. T. C. Kandpal, A. K. Singhal, and S. S. Mathur, “Optimum power from a solar thermal power plant using solar concentrators,” Energy Convers. Manage. 23(2), 103–106 (1983).
    [CrossRef]
  4. S. A. Omer and D. G. Infield, “Design optimization of thermoelectric devices for solar power generation,” Sol. Energy Mater. Sol. Cells 53(1-2), 67–82 (1998).
    [CrossRef]
  5. F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science 285(5428), 703–706 (1999).
    [CrossRef] [PubMed]
  6. C. G. Granqvist, “Solar Energy Materials,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1789–1803 (2003).
    [CrossRef]
  7. A. Reja and R. J. Ram, “Solar Thermoelectric Generator for micro-Power Applications,” in Optics and Photonics for Advanced Energy Technology, OSA Technical Digest (CD) (Optical Society of America, 2009), ThC11. http://www.opticsinfobase.org/abstract.cfm?URI=Energy-2009-ThC11
  8. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
    [CrossRef] [PubMed]
  9. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
    [CrossRef] [PubMed]
  10. J. Chen, “Thermodynamic analysis of a solar-driven thermoelectric generator,” J. Appl. Phys. 79(5), 2717–2721 (1996).
    [CrossRef]
  11. G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, “Semiconducting Ge clathrates: Promising candidates for thermoelectric applications,” Appl. Phys. Lett. 73(2), 178–180 (1998).
    [CrossRef]
  12. A. Y. Vorobyev and C. Guo, “Solar Absorber Surfaces Treated by Femtosecond Laser,” in 2010 International Conference on Biosciences (BIOSCIENCESWORLD), 2010), 135–138.
  13. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [CrossRef] [PubMed]
  14. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914–041913 (2008).
    [CrossRef]
  15. J. J. Brophy, Basic electronics for scientist, 5th ed. (McGraw-Hill Publishing Company, Singapore, 1990).
  16. M. Cobble, “Calculations of Generator Performance,” in CRC Handbook of Thermoelectrics (CRC Press, 1995).
  17. F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
    [CrossRef]
  18. F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
    [CrossRef]
  19. T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals,” Appl. Phys. Lett. 95(12), 123111 (2009).
    [CrossRef]
  20. A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14(6), 2164–2169 (2006).
    [CrossRef] [PubMed]
  21. J. Agassi, “The kirchhoff-planck radiation law,” Science 156(3771), 30–37 (1967).
    [CrossRef] [PubMed]
  22. A. D. Raki, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [CrossRef]

2011 (2)

F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
[CrossRef]

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

2010 (1)

M. Xie and D. M. Gruen, “Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies,” J. Phys. Chem. B 114(45), 14339–14342 (2010).
[CrossRef] [PubMed]

2009 (2)

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals,” Appl. Phys. Lett. 95(12), 123111 (2009).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914–041913 (2008).
[CrossRef]

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

2006 (1)

2003 (1)

C. G. Granqvist, “Solar Energy Materials,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1789–1803 (2003).
[CrossRef]

2001 (1)

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

1999 (1)

F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science 285(5428), 703–706 (1999).
[CrossRef] [PubMed]

1998 (2)

S. A. Omer and D. G. Infield, “Design optimization of thermoelectric devices for solar power generation,” Sol. Energy Mater. Sol. Cells 53(1-2), 67–82 (1998).
[CrossRef]

G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, “Semiconducting Ge clathrates: Promising candidates for thermoelectric applications,” Appl. Phys. Lett. 73(2), 178–180 (1998).
[CrossRef]

1996 (1)

J. Chen, “Thermodynamic analysis of a solar-driven thermoelectric generator,” J. Appl. Phys. 79(5), 2717–2721 (1996).
[CrossRef]

1995 (1)

1983 (1)

T. C. Kandpal, A. K. Singhal, and S. S. Mathur, “Optimum power from a solar thermal power plant using solar concentrators,” Energy Convers. Manage. 23(2), 103–106 (1983).
[CrossRef]

1967 (1)

J. Agassi, “The kirchhoff-planck radiation law,” Science 156(3771), 30–37 (1967).
[CrossRef] [PubMed]

Abboud, M.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Agassi, J.

J. Agassi, “The kirchhoff-planck radiation law,” Science 156(3771), 30–37 (1967).
[CrossRef] [PubMed]

Atlan, M.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Boukai, A. I.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Bun, P.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Bunimovich, Y.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Chen, J.

J. Chen, “Thermodynamic analysis of a solar-driven thermoelectric generator,” J. Appl. Phys. 79(5), 2717–2721 (1996).
[CrossRef]

Chen, R.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Cohn, J. L.

G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, “Semiconducting Ge clathrates: Promising candidates for thermoelectric applications,” Appl. Phys. Lett. 73(2), 178–180 (1998).
[CrossRef]

Colpitts, T.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Coppey-Moisan, M.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Coppola, S.

F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
[CrossRef]

Delgado, R. D.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Desbiolles, P.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

DiSalvo, F. J.

F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science 285(5428), 703–706 (1999).
[CrossRef] [PubMed]

Ferraro, P.

F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
[CrossRef]

Garnett, E. C.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Goddard, W. A.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Granqvist, C. G.

C. G. Granqvist, “Solar Energy Materials,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1789–1803 (2003).
[CrossRef]

Grilli, S.

F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
[CrossRef]

Gross, M.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Gruen, D. M.

M. Xie and D. M. Gruen, “Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies,” J. Phys. Chem. B 114(45), 14339–14342 (2010).
[CrossRef] [PubMed]

Guo, C.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals,” Appl. Phys. Lett. 95(12), 123111 (2009).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914–041913 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14(6), 2164–2169 (2006).
[CrossRef] [PubMed]

Heath, J. R.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Hochbaum, A. I.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Hwang, T. Y.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals,” Appl. Phys. Lett. 95(12), 123111 (2009).
[CrossRef]

Infield, D. G.

S. A. Omer and D. G. Infield, “Design optimization of thermoelectric devices for solar power generation,” Sol. Energy Mater. Sol. Cells 53(1-2), 67–82 (1998).
[CrossRef]

Joud, F.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Kandpal, T. C.

T. C. Kandpal, A. K. Singhal, and S. S. Mathur, “Optimum power from a solar thermal power plant using solar concentrators,” Energy Convers. Manage. 23(2), 103–106 (1983).
[CrossRef]

Liang, W.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Majumdar, A.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

Mathur, S. S.

T. C. Kandpal, A. K. Singhal, and S. S. Mathur, “Optimum power from a solar thermal power plant using solar concentrators,” Energy Convers. Manage. 23(2), 103–106 (1983).
[CrossRef]

Merola, F.

F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
[CrossRef]

Miccio, L.

F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
[CrossRef]

Najarian, M.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Nolas, G. S.

G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, “Semiconducting Ge clathrates: Promising candidates for thermoelectric applications,” Appl. Phys. Lett. 73(2), 178–180 (1998).
[CrossRef]

O’Quinn, B.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Omer, S. A.

S. A. Omer and D. G. Infield, “Design optimization of thermoelectric devices for solar power generation,” Sol. Energy Mater. Sol. Cells 53(1-2), 67–82 (1998).
[CrossRef]

Paturzo, M.

F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
[CrossRef]

Raki, A. D.

Schujman, S. B.

G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, “Semiconducting Ge clathrates: Promising candidates for thermoelectric applications,” Appl. Phys. Lett. 73(2), 178–180 (1998).
[CrossRef]

Siivola, E.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Singhal, A. K.

T. C. Kandpal, A. K. Singhal, and S. S. Mathur, “Optimum power from a solar thermal power plant using solar concentrators,” Energy Convers. Manage. 23(2), 103–106 (1983).
[CrossRef]

Slack, G. A.

G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, “Semiconducting Ge clathrates: Promising candidates for thermoelectric applications,” Appl. Phys. Lett. 73(2), 178–180 (1998).
[CrossRef]

Suck, S.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Tahir-Kheli, J.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Tessier, G.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Venkatasubramanian, R.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Verpillat, F.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Vespini, V.

F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals,” Appl. Phys. Lett. 95(12), 123111 (2009).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914–041913 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14(6), 2164–2169 (2006).
[CrossRef] [PubMed]

Warnasooriya, N.

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

Xie, M.

M. Xie and D. M. Gruen, “Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies,” J. Phys. Chem. B 114(45), 14339–14342 (2010).
[CrossRef] [PubMed]

Yang, P.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

Yu, J.-K.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

3D Res. (1)

F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011).
[CrossRef]

3D Research. (1)

F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

C. G. Granqvist, “Solar Energy Materials,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1789–1803 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals,” Appl. Phys. Lett. 95(12), 123111 (2009).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914–041913 (2008).
[CrossRef]

G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, “Semiconducting Ge clathrates: Promising candidates for thermoelectric applications,” Appl. Phys. Lett. 73(2), 178–180 (1998).
[CrossRef]

Energy Convers. Manage. (1)

T. C. Kandpal, A. K. Singhal, and S. S. Mathur, “Optimum power from a solar thermal power plant using solar concentrators,” Energy Convers. Manage. 23(2), 103–106 (1983).
[CrossRef]

J. Appl. Phys. (1)

J. Chen, “Thermodynamic analysis of a solar-driven thermoelectric generator,” J. Appl. Phys. 79(5), 2717–2721 (1996).
[CrossRef]

J. Phys. Chem. B (1)

M. Xie and D. M. Gruen, “Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies,” J. Phys. Chem. B 114(45), 14339–14342 (2010).
[CrossRef] [PubMed]

Nature (3)

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008).
[CrossRef] [PubMed]

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

Science (2)

F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science 285(5428), 703–706 (1999).
[CrossRef] [PubMed]

J. Agassi, “The kirchhoff-planck radiation law,” Science 156(3771), 30–37 (1967).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

S. A. Omer and D. G. Infield, “Design optimization of thermoelectric devices for solar power generation,” Sol. Energy Mater. Sol. Cells 53(1-2), 67–82 (1998).
[CrossRef]

Other (4)

A. Reja and R. J. Ram, “Solar Thermoelectric Generator for micro-Power Applications,” in Optics and Photonics for Advanced Energy Technology, OSA Technical Digest (CD) (Optical Society of America, 2009), ThC11. http://www.opticsinfobase.org/abstract.cfm?URI=Energy-2009-ThC11

A. Y. Vorobyev and C. Guo, “Solar Absorber Surfaces Treated by Femtosecond Laser,” in 2010 International Conference on Biosciences (BIOSCIENCESWORLD), 2010), 135–138.

J. J. Brophy, Basic electronics for scientist, 5th ed. (McGraw-Hill Publishing Company, Singapore, 1990).

M. Cobble, “Calculations of Generator Performance,” in CRC Handbook of Thermoelectrics (CRC Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(color online) (a) Picture of three TEG modules used in our experiment. From left to right are the bare module, one covered by a laser-treated Al foil, and one covered with untreated Al foil. (b) A schematic of the TEG module and the measurement circuit. A and V represent ammeter and voltmeter, respectively.

Fig. 2
Fig. 2

(color online) (a) SEM images of the laser-treated Al surface. (b) A detailed view of the grooves at its peak. (c) A detailed view of the grooves at its valley. (d) The morphological profile of the grooves measured by UV-LSCM.

Fig. 3
Fig. 3

(color online) Total reflectance of a bare TEG, the laser-treated Al surface, and untreated Al surface in the wavelength range of 0.25 - 16 µm. Calculated reflectance of a smooth Al based on the Fresnel theory is also plotted.[22].

Fig. 4
Fig. 4

(color online) Dependence of the generated electrical power on solar irradiation from the three TEG modules under direct sunlight.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = q h E A q h q c q h = P E A α ( Δ T ) 2 ,

Metrics