Abstract

Dye-sensitized solar cells have slightly lower photoelectric efficiency than silicon solar cells. Researchers have investigated various ways to address this problem. In this paper, we found that the optimized separation between the condenser lens and the cells was 8 mm. The cell efficiency increased from 2.5% to 8.3% compared to two isolated cells without a lens. If the efficiency of the basic cell can be increased sufficiently, it should be possible to commercialize the product.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O'Regan, M. Grätzel, and D. Fitzmaurice, “Optical electrochemistry. I, Steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode,” Chem. Phys. Lett. 183(1–2), 89–93 (1991).
    [CrossRef]
  2. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004).
    [CrossRef]
  3. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
    [CrossRef] [PubMed]
  4. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
    [CrossRef]
  5. N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008).
    [CrossRef]
  6. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
    [CrossRef] [PubMed]
  7. Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core,” J. Phys. Chem. B 107(9), 1977–1981 (2003).
    [CrossRef]
  8. V. P. S. Perera, P. K. D. D. P. Pitigala, P. V. V. Jayaweera, K. M. P. Bandaranayake, and K. Tennakone, “Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures,” J. Phys. Chem. B 107(50), 13758–13761 (2003).
    [CrossRef]
  9. S. Ngamsinlapasathian, “Highly efficient dye-sensitized solar cell using nanocrystalline titanium containing nanotube structure,” J. Photochem. Photobiol. Chem. 164(1-3), 145–151 (2004).
    [CrossRef]
  10. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
    [CrossRef]
  11. Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films,” J. Phys. Chem. 100(51), 20056–20062 (1996).
    [CrossRef]
  12. S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
    [CrossRef]
  13. A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
    [CrossRef]
  14. S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
    [CrossRef]
  15. G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
    [CrossRef]

2010 (1)

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

2009 (1)

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
[CrossRef]

2008 (1)

N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008).
[CrossRef]

2006 (2)

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

2005 (2)

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004).
[CrossRef]

S. Ngamsinlapasathian, “Highly efficient dye-sensitized solar cell using nanocrystalline titanium containing nanotube structure,” J. Photochem. Photobiol. Chem. 164(1-3), 145–151 (2004).
[CrossRef]

2003 (3)

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core,” J. Phys. Chem. B 107(9), 1977–1981 (2003).
[CrossRef]

V. P. S. Perera, P. K. D. D. P. Pitigala, P. V. V. Jayaweera, K. M. P. Bandaranayake, and K. Tennakone, “Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures,” J. Phys. Chem. B 107(50), 13758–13761 (2003).
[CrossRef]

1996 (1)

Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films,” J. Phys. Chem. 100(51), 20056–20062 (1996).
[CrossRef]

1993 (1)

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

1991 (1)

B. O'Regan, M. Grätzel, and D. Fitzmaurice, “Optical electrochemistry. I, Steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode,” Chem. Phys. Lett. 183(1–2), 89–93 (1991).
[CrossRef]

Bandaranayake, K. M. P.

V. P. S. Perera, P. K. D. D. P. Pitigala, P. V. V. Jayaweera, K. M. P. Bandaranayake, and K. Tennakone, “Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures,” J. Phys. Chem. B 107(50), 13758–13761 (2003).
[CrossRef]

Boschloo, G.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
[CrossRef]

Calvo, M. E.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

Caulier, O.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

Chen, S. G.

Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core,” J. Phys. Chem. B 107(9), 1977–1981 (2003).
[CrossRef]

Chiba, Y.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Colodrero, S.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
[CrossRef]

De Angelis, F.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Diamant, Y.

Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core,” J. Phys. Chem. B 107(9), 1977–1981 (2003).
[CrossRef]

Durrant, J. R.

Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films,” J. Phys. Chem. 100(51), 20056–20062 (1996).
[CrossRef]

Fantacci, S.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Fitzmaurice, D.

B. O'Regan, M. Grätzel, and D. Fitzmaurice, “Optical electrochemistry. I, Steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode,” Chem. Phys. Lett. 183(1–2), 89–93 (1991).
[CrossRef]

Graetzel, M.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Grätzel, M.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004).
[CrossRef]

Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films,” J. Phys. Chem. 100(51), 20056–20062 (1996).
[CrossRef]

B. O'Regan, M. Grätzel, and D. Fitzmaurice, “Optical electrochemistry. I, Steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode,” Chem. Phys. Lett. 183(1–2), 89–93 (1991).
[CrossRef]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Hagfeldt, A.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
[CrossRef]

Häggman, L.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
[CrossRef]

Han, L.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Humphry-Baker, R.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Islam, A.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Ito, S.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Jayaweera, P. V. V.

V. P. S. Perera, P. K. D. D. P. Pitigala, P. V. V. Jayaweera, K. M. P. Bandaranayake, and K. Tennakone, “Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures,” J. Phys. Chem. B 107(50), 13758–13761 (2003).
[CrossRef]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Katayama, T.

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Kay, A.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Kim, K.

N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008).
[CrossRef]

Kitamura, T.

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Klug, D. R.

Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films,” J. Phys. Chem. 100(51), 20056–20062 (1996).
[CrossRef]

Koide, N.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Komiya, R.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Liska, P.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

López-Alcaraz, F. J.

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

Lozano, G.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

Matsuda, M.

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Melamed, O.

Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core,” J. Phys. Chem. B 107(9), 1977–1981 (2003).
[CrossRef]

Miguez, H.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
[CrossRef]

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

Mihi, A.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
[CrossRef]

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

Moser, J. E.

Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films,” J. Phys. Chem. 100(51), 20056–20062 (1996).
[CrossRef]

Mueller, E.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Nazeeruddin, M. K.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Ngamsinlapasathian, S.

S. Ngamsinlapasathian, “Highly efficient dye-sensitized solar cell using nanocrystalline titanium containing nanotube structure,” J. Photochem. Photobiol. Chem. 164(1-3), 145–151 (2004).
[CrossRef]

Ocaña, M.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
[CrossRef]

O'Regan, B.

B. O'Regan, M. Grätzel, and D. Fitzmaurice, “Optical electrochemistry. I, Steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode,” Chem. Phys. Lett. 183(1–2), 89–93 (1991).
[CrossRef]

Park, N.-G.

N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008).
[CrossRef]

Perera, V. P. S.

V. P. S. Perera, P. K. D. D. P. Pitigala, P. V. V. Jayaweera, K. M. P. Bandaranayake, and K. Tennakone, “Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures,” J. Phys. Chem. B 107(50), 13758–13761 (2003).
[CrossRef]

Pitigala, P. K. D. D. P.

V. P. S. Perera, P. K. D. D. P. Pitigala, P. V. V. Jayaweera, K. M. P. Bandaranayake, and K. Tennakone, “Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures,” J. Phys. Chem. B 107(50), 13758–13761 (2003).
[CrossRef]

Rodicio, I.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Selloni, A.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Sugiyama, M.

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Tachibana, Y.

Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films,” J. Phys. Chem. 100(51), 20056–20062 (1996).
[CrossRef]

Takeru, B.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Takeuchi, T.

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Tennakone, K.

V. P. S. Perera, P. K. D. D. P. Pitigala, P. V. V. Jayaweera, K. M. P. Bandaranayake, and K. Tennakone, “Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures,” J. Phys. Chem. B 107(50), 13758–13761 (2003).
[CrossRef]

Viscardi, G.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Vlachopoulos, N.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Wada, Y.

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Watanabe, Y.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Yanagida, S.

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Zaban, A.

Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core,” J. Phys. Chem. B 107(9), 1977–1981 (2003).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous onedimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006).
[CrossRef]

Chem. Mater. (1)

S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, “Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells,” Chem. Mater. 15(14), 2824–2828 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

B. O'Regan, M. Grätzel, and D. Fitzmaurice, “Optical electrochemistry. I, Steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode,” Chem. Phys. Lett. 183(1–2), 89–93 (1991).
[CrossRef]

J. Am. Chem. Soc. (2)

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

J. Photochem. Photobiol. Chem. (2)

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004).
[CrossRef]

S. Ngamsinlapasathian, “Highly efficient dye-sensitized solar cell using nanocrystalline titanium containing nanotube structure,” J. Photochem. Photobiol. Chem. 164(1-3), 145–151 (2004).
[CrossRef]

J. Phys. Chem. (1)

Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films,” J. Phys. Chem. 100(51), 20056–20062 (1996).
[CrossRef]

J. Phys. Chem. B (2)

Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core,” J. Phys. Chem. B 107(9), 1977–1981 (2003).
[CrossRef]

V. P. S. Perera, P. K. D. D. P. Pitigala, P. V. V. Jayaweera, K. M. P. Bandaranayake, and K. Tennakone, “Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures,” J. Phys. Chem. B 107(50), 13758–13761 (2003).
[CrossRef]

J. Phys. Chem. C (1)

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Nat. Mater. (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Structure of Optical System. (b) Schematic diagram of the lens system.

Fig. 2
Fig. 2

(a) Shape of the condenser lens. (b) Simulation of the condenser lens

Fig. 3
Fig. 3

IV-curves of a dye-sensitized solar cell sample for experiment

Fig. 4
Fig. 4

Simulation of the condenser lens

Fig. 5
Fig. 5

Simulation of the condenser lens

Tables (4)

Tables Icon

Table 1 Specifications of the condenser lens

Tables Icon

Table 2 Specifications of the condenser lens

Tables Icon

Table 3 Specifications of the staked DSSC with a condenser lens placed at several distance

Tables Icon

Table 4 Specifications of the condenser lens

Metrics