Abstract

The enhancement of solar light absorption in a solar cell is a challenging issue. In this article we show that in a thin-film silicon solar cell covered with silver nanoparticles on the surface, the absorption of the incident light can be particularly enhanced at certain angular range and wavelength. Such absorption enhancements are associated with the resonant localized surface plasmon (LSP) modes of the nanoparticle and nanoparticle-induced local Fabry-Perot (FP) modes. Our simulations suggest that the spectral shift of the LSP modes due to changing the incident angle leads to an incident-angle-sensitive absorption enhancement of the solar cell. Selecting the incident angle in a well-defined range of 0° to 35° is essential for optimizing the performance of a thin-film solar cell.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  2. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
    [CrossRef]
  3. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  5. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
    [CrossRef]
  6. K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
    [CrossRef]
  7. B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
    [CrossRef]
  8. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  9. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  10. U. Guler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express 18(16), 17322–17338 (2010).
    [CrossRef] [PubMed]
  11. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
    [CrossRef]
  12. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
    [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley & Sons, 1983).
  14. Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
    [CrossRef]
  15. H. F. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007).
    [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1985).
  17. W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
    [CrossRef] [PubMed]
  18. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  19. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
    [CrossRef]
  20. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [CrossRef]

2010 (2)

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

U. Guler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express 18(16), 17322–17338 (2010).
[CrossRef] [PubMed]

2009 (2)

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

2008 (3)

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

2007 (4)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

H. F. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007).
[CrossRef] [PubMed]

2006 (3)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[CrossRef]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Akimov, Y. A.

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Beck, F. J.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Catchpole, K. R.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Chen, S. C.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Chong, T. C.

B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Gai, H. F.

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Guler, U.

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Hong, M. H.

B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
[CrossRef]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Jo, J.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kim, D. Y.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kim, S. S.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Li, E. P.

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Lu, Y. L.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Luk‘yanchuk, B. S.

B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
[CrossRef]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Na, S. I.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Nah, Y. C.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Ostrikov, K.

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Polman, A.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Reinhardt, K.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Shi, L. P.

B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

Tian, Q.

Tribelsky, M. I.

B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Turan, R.

Van Duyne, R. P.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Wang, J.

Wang, W.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Wang, Z. B.

B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
[CrossRef]

Wu, S. M.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

Zhang, G.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Zhao, J.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhou, Y.

B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

B. S. Luk‘yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89(2), 259–264 (2007).
[CrossRef]

J. Appl. Phys. (4)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Nano Lett. (1)

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Plasmonics (1)

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1985).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley & Sons, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Dipole and quadrupole mode resonant wavelengths as a function of the silver nanosphere size. (b) (c) Electric field profile of the dipole mode (b) or Quadrupole mode (c) of a 200nm-diamater spherical silver nanoparticle obtained through FEM simulation.

Fig. 2
Fig. 2

Sketch of the simulation configuration of a single silver nanoparticle on top of an a-Si solar cell.

Fig. 3
Fig. 3

(a) (b) Absorption (W/m) in a 100 nm (a) or 150 nm (b) thick bare a-Si substrate or a-Si substrate coated with an 80 nm silver film under a normally incident TM plane wave and the corresponding absorption enhancement. Black curve: absorption in the bare a-Si substrate. Red curve: absorption in the a-Si substrate coated with an 80 nm silver film. Blue curve: absorption enhancement by adding the silver film. (c) (d) Absorption enhancement in a 100 nm (c) or 150 nm (d) thick a-Si substrate with a single on-top spherical silver particle of diameters D (nm) under a normally incident TM plane wave.

Fig. 4
Fig. 4

Absorption enhancement for 100 nm thick and 150 nm thick a-Si substrates as the surface coverage of the 200 nm diameter nanoparticles increases from 6.67% to 20%.

Fig. 5
Fig. 5

Absorption enhancement mappings for a-Si solar cells of thickness d (nm) covered by a single silver nanoparticle of diameter D (nm) under TM incidence with α ranging from 0° to 45°. (a) d = 100 nm, D = 150 nm. (b) d = 100 nm, D = 200 nm. (c) d = 150 nm, D = 150 nm. ((d) d = 150 nm, D = 200 nm.

Fig. 6
Fig. 6

The spectral positions of the dipole mode enhancement peak of the silver nanoparticle on a 100 nm thick a-Si solar cell as a function of the incident angle.

Fig. 7
Fig. 7

(a) Normalized absorption enhancement in a 100nm thick a-Si solar cell with on-top silver nanoparticles of diameters D = 200nm or 150nm at a surface coverage of 6.67%, calculated by integrating the absorption enhancements over the AM 1.5G solar spectrum. (b) Normalized absorption enhancement in a 150nm thick a-Si solar cell.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) ε = l + 1 l
Q a b s = 8 π a λ Im ( ε ( ω ) 1 ε ( ω ) + 2 )
Q s c a = 128 π 4 a 4 3 λ 4 | ε ( ω ) 1 ε ( ω ) + 2 | 2
Q a b s = 8 π a λ Im [ ε ( ω ) 1 ε ( ω ) + 2 + π 2 a 2 3 λ 2 ε ( ω ) 1 ε ( ω ) + 1.5 + 2 π 2 a 2 15 λ 2 ( ε ( ω ) 1 ) ]
Q s c a = 128 π 4 a 4 3 λ 4 [ | ε ( ω ) 1 ε ( ω ) + 2 | 2 + π 4 a 4 15 λ 4 | ε ( ω ) 1 ε ( ω ) + 1.5 | 2 + 4 π 4 a 4 225 λ 4 | ε ( ω ) 1 | 2 ]
λ k = 2 n d k
E = k 2 e i k r r × ( r × p ) r 3 + e i k r ( 1 - i k r ) [ r 2 p - 3 r ( r × p ) ] r 5

Metrics