Abstract

A 25-pixel illumination system composed of a 5 × 5 dielectric liquid-lens (DLL) zoom module array, 25 light-emission diodes (LEDs), and a secondary optical lens demonstrates 3D light field manipulation. LEDs function as 2D illumination pixels while the DLL module array performs longitudinal illuminance adjustability by zooming each illumination pixel. A test on the similarity of two illuminance patterns between experiments and simulations shows a normalized cross correlation (NCC) higher than 0.8, indicating the feasibility of the system design. Also, the illumination system is further applied to correct a distorted light pattern on a 45° tilt screen as well as to perform light compensation on distance-differential objects.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Richardson, “Motor-controlled lens system,” US Patent 5,029,992 (July1991).
  2. A. Uke and S. Wright, “Multi-lens zoom system and method for flashlights,” US Patent App. 11/668,605 (February 2007).
  3. P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
    [CrossRef]
  4. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
    [CrossRef]
  5. H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
    [CrossRef] [PubMed]
  6. H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [CrossRef] [PubMed]
  7. C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A, Pure Appl. Opt. 8(7), S365–S369 (2006).
    [CrossRef]
  8. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage––an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [CrossRef]
  9. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [CrossRef]
  10. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [CrossRef]
  11. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
    [CrossRef] [PubMed]
  12. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [CrossRef] [PubMed]
  13. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [CrossRef] [PubMed]
  14. H. W. Ren, H. Q. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  15. C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photon. Technol. Lett. 21(19), 1396–1398 (2009).
    [CrossRef]
  16. C. G. Tsai and J. A. Yeh, “Circular dielectric liquid iris,” Opt. Lett. 35(14), 2484–2486 (2010).
    [CrossRef] [PubMed]
  17. C. C. Yang, C. G. Tsai, and J. A. Yeh, “Miniaturization of dielectric liquid microlens in package,” Biomicrofluidics 4(4), 43006 (2010).
    [CrossRef]
  18. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31(14), 2193–2195 (2006).
    [CrossRef] [PubMed]
  19. S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists (McGraw-Hill Higher Education, 2008).

2010 (2)

C. C. Yang, C. G. Tsai, and J. A. Yeh, “Miniaturization of dielectric liquid microlens in package,” Biomicrofluidics 4(4), 43006 (2010).
[CrossRef]

C. G. Tsai and J. A. Yeh, “Circular dielectric liquid iris,” Opt. Lett. 35(14), 2484–2486 (2010).
[CrossRef] [PubMed]

2009 (1)

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (3)

2005 (1)

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[CrossRef]

2004 (2)

H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[CrossRef] [PubMed]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

2003 (1)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage––an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

1992 (1)

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage––an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Chang, C. A.

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A, Pure Appl. Opt. 8(7), S365–S369 (2006).
[CrossRef]

C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[CrossRef] [PubMed]

Chen, C. N.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

Cheng, C. C.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[CrossRef] [PubMed]

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A, Pure Appl. Opt. 8(7), S365–S369 (2006).
[CrossRef]

Cheng, L. S.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

Dannberg, P.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[CrossRef]

Fan, Y. H.

Fox, D. W.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Huang, S. M.

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Kudaev, S.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Lee, T. X.

Lee, Y. L.

Liu, C. H.

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A, Pure Appl. Opt. 8(7), S365–S369 (2006).
[CrossRef]

Ma, S. H.

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Masuda, S.

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[CrossRef]

Nose, T.

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage––an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Ren, H. W.

Sato, S.

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[CrossRef]

Schreiber, P.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[CrossRef]

Sun, C. C.

Tsai, C. G.

C. G. Tsai and J. A. Yeh, “Circular dielectric liquid iris,” Opt. Lett. 35(14), 2484–2486 (2010).
[CrossRef] [PubMed]

C. C. Yang, C. G. Tsai, and J. A. Yeh, “Miniaturization of dielectric liquid microlens in package,” Biomicrofluidics 4(4), 43006 (2010).
[CrossRef]

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

Wu, B.

Wu, S. T.

Xianyu, H. Q.

Xu, S.

Yang, C. C.

C. C. Yang, C. G. Tsai, and J. A. Yeh, “Miniaturization of dielectric liquid microlens in package,” Biomicrofluidics 4(4), 43006 (2010).
[CrossRef]

Yang, J. T.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Yeh, J. A.

C. C. Yang, C. G. Tsai, and J. A. Yeh, “Miniaturization of dielectric liquid microlens in package,” Biomicrofluidics 4(4), 43006 (2010).
[CrossRef]

C. G. Tsai and J. A. Yeh, “Circular dielectric liquid iris,” Opt. Lett. 35(14), 2484–2486 (2010).
[CrossRef] [PubMed]

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[CrossRef] [PubMed]

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A, Pure Appl. Opt. 8(7), S365–S369 (2006).
[CrossRef]

Zeitner, U. D.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[CrossRef]

Appl. Phys. Lett. (2)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Biomicrofluidics (1)

C. C. Yang, C. G. Tsai, and J. A. Yeh, “Miniaturization of dielectric liquid microlens in package,” Biomicrofluidics 4(4), 43006 (2010).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage––an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A, Pure Appl. Opt. 8(7), S365–S369 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Proc. SPIE (1)

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
[CrossRef]

Other (3)

J. R. Richardson, “Motor-controlled lens system,” US Patent 5,029,992 (July1991).

A. Uke and S. Wright, “Multi-lens zoom system and method for flashlights,” US Patent App. 11/668,605 (February 2007).

S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists (McGraw-Hill Higher Education, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the 3D illumination system. The 5 × 5 module array is positioned under the secondary optical lens. (b) Schematic of the single module. Each single module is composed of two face-to-face dielectric liquid lenses and one LED.

Fig. 2
Fig. 2

(a) Side view of the packaged single module. The two liquids lenses are positioned face-to-face and fixed on the same optical axis. (b) Top view of the illumination system. The 5 × 5 module array is positioned under the secondary optical lens

Fig. 3
Fig. 3

Focal length variation as a function of driving voltage. The liquid lens at zero bias had a focal length of 53.8 mm. The focal length changed to 19.5 mm when the lens was biased at 40 Vrms.

Fig. 4
Fig. 4

H-shape illuminance patterns at distances of 30 cm and 60 cm from the system. The bias setting of all illuminating pixels was changed to 40 Vrms to obtain a highly similar illuminance pattern. Compared with the reference pattern at 30 cm, the one at 60 cm has an NCC value of 0.9 and an illuminance difference about 7.7%.

Fig. 5
Fig. 5

Correction of light pattern distortion on a 45° tilt screen positioned at a distance of 30 cm away. The distorted light pattern was corrected by increasing the voltage to 40 Vrms for pixels 5, 10, 13–15, 20, and 25. Compared with the original pattern at 30 cm in Fig. 4, the corrected one improved the NCC value from 0.14 to 0.64 and reduced the illuminance difference within 6.6%.

Fig. 6
Fig. 6

(a) Lighting demonstration on a single target, non-uniform illumination on a tiger doll projected by a commercial flashlight from the right-hand side. (b) Uniform illumination obtained by turning on LEDs at pixels no.1, 2, 6, 7, 11, 12, and 16–25 and setting the DLL voltage at zero bias.

Fig. 7
Fig. 7

Lighting demonstration on two distance-differential targets. (a) By turning on LEDs at pixels 9,12,14, and 17 and with setting the DLL voltage at zero bias, the princess was dimmer due to the longer distance. (b) Lighting compensation was executed by setting the DLL voltage at pixels 9 and 14 to be 40 Vrms.

Tables (2)

Tables Icon

Table 1 NCC Between Simulation Predictions and Experiment Results for Capital H Pattern at 30 and 60 cm Away from Illumination System

Tables Icon

Table 2 NCC Compared with Simulation Predictions and Experiment Results for Capital H Pattern on a Tilt Screen at 30 cm Away from Illumination System before/after Modification

Metrics