Abstract

A photoacoustic (PA) sensor has been developed for the detection of nitrogen dioxide (NO2). Ten amplitude-modulated high-power light emitting diodes (LEDs), emitting a total optical power of 9 W at 453 nm, are used to excite the photoacoustic signal in NO2. The LEDs are attached to the circumference of a cylindrical PA cell. The induced longitudinal acoustics waves are detected using two electromechanical film stacks, located at the ends of the cell. Background signal cancelation is achieved by using phase-sensitive detection of the difference signal of the two pressure transducers. The phase-sensitive approach allows for improved dynamic range and sensitivity. A detection limit of 10 parts per billion by volume was achieved for flowing NO2 gas sample in an acquisition time of 2.1 s, corresponding to a minimum detectable absorption coefficient of 1.6 × 10−7 cm−1 Hz−1/2. The developed sensor has potential for compact, light-weight, and low-cost measurement of NO2.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Robert E. Krieger Publishing Company, 1980).
  2. “Our Nation’s Air–Status and Trends through 2008,” Tech. Rep. , U.S. Environmental Protection Agency (2010).
  3. J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
    [CrossRef] [PubMed]
  4. P. C. Claspy, C. Ha, and Y.-H. Pao, “Optoacoustic detection of NO2 using a pulsed dye laser,” Appl. Opt. 16, 2972–2973 (1977).
    [CrossRef] [PubMed]
  5. J. Saarela, J. Sand, T. Sorvajrvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
    [CrossRef]
  6. A. Manninen, J. Sand, J. Saarela, T. Sorvajärvi, J. Toivonen, and R. Hernberg, “Electromechanical film as a photoacoustic transducer,” Opt. Express 17, 16994–16999 (2009).
    [CrossRef] [PubMed]
  7. N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
    [CrossRef]
  8. R. Bartlome, M. Kaučikas, and M. W. Sigrist, “Modulated resonant versus pulsed resonant photoacoustics intrace gas detection,” Appl. Phys. B 96, 561–566 (2009).
    [CrossRef]
  9. V. Slezak, “High-precision pulsed photoacoustic spectroscopy in NO2-N2,” Appl. Phys. B: Lasers Opt. 73, 751–755 (2001).
    [CrossRef]
  10. V. Slezak, G. Santiago, and A. L. Peuriot, “Photoacoustic detection of NO2 traces with CW and pulsed green lasers,” Opt. Lasers Eng. 40, 33–41 (2003).
    [CrossRef]
  11. H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
    [CrossRef] [PubMed]
  12. J. Kalkman and H. van Kesteren, “Relaxation effects and high sensitivity photoacoustic detection of NO2 with a blue laser diode,” Appl. Phys. B: Lasers Opt. 90, 197–200 (2008).
    [CrossRef]
  13. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
    [CrossRef] [PubMed]
  14. J. Lima, H. Vargas, A. Mikls, M. Angelmahr, and P. Hess, “Photoacoustic detection of NO2 and N2O using quantum cascade lasers,” Appl. Phys. B: Lasers Opt. 85, 279–284 (2006).
    [CrossRef]
  15. R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
    [CrossRef]
  16. G. D. Santiago, M. G. Gonzalez, A. L. Peuriot, F. Gonzalez, and V. B. Slezak, “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006).
    [CrossRef]
  17. K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
    [CrossRef]
  18. V. Sivakumaran, K. P. Subramanian, and V. Kumar, “Self-quenching and zero-pressure lifetime studies of NO2 at 465–490, 423–462 and 399–416 nm,” J. Quant. Spectrosc. Radiat. Transf. 69, 525–534 (2001).
    [CrossRef]
  19. R. A. Gangi and L. Burnelle, “Electronic structure and electronic spectrum of nitrogen dioxide. III Spectral interpretation,” J. Chem. Phys. 55, 851–856 (1971).
    [CrossRef]
  20. C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
    [CrossRef]
  21. A. Manninen, “Pulsed Laser Spectroscopy: Bioaerosol Fluorescence and Gas-Phase Photoacoustics,” Ph.D. thesis, Tampere University of Technology (2009).
  22. M. Paajanen, J. Lekkala, and K. Kirjavainen, “Electromechanical film (EMFi)–a new multipurpose electret material,” Sens. Actuators , A 84, 95–102 (2000).
    [CrossRef]
  23. Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).
  24. A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
    [CrossRef]
  25. A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004).
    [CrossRef]
  26. G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991).
    [CrossRef]

2011 (1)

2010 (3)

J. Saarela, J. Sand, T. Sorvajrvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[CrossRef]

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[CrossRef]

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[CrossRef]

2009 (2)

R. Bartlome, M. Kaučikas, and M. W. Sigrist, “Modulated resonant versus pulsed resonant photoacoustics intrace gas detection,” Appl. Phys. B 96, 561–566 (2009).
[CrossRef]

A. Manninen, J. Sand, J. Saarela, T. Sorvajärvi, J. Toivonen, and R. Hernberg, “Electromechanical film as a photoacoustic transducer,” Opt. Express 17, 16994–16999 (2009).
[CrossRef] [PubMed]

2008 (1)

J. Kalkman and H. van Kesteren, “Relaxation effects and high sensitivity photoacoustic detection of NO2 with a blue laser diode,” Appl. Phys. B: Lasers Opt. 90, 197–200 (2008).
[CrossRef]

2006 (3)

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

J. Lima, H. Vargas, A. Mikls, M. Angelmahr, and P. Hess, “Photoacoustic detection of NO2 and N2O using quantum cascade lasers,” Appl. Phys. B: Lasers Opt. 85, 279–284 (2006).
[CrossRef]

G. D. Santiago, M. G. Gonzalez, A. L. Peuriot, F. Gonzalez, and V. B. Slezak, “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006).
[CrossRef]

2005 (1)

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004).
[CrossRef]

2003 (2)

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

V. Slezak, G. Santiago, and A. L. Peuriot, “Photoacoustic detection of NO2 traces with CW and pulsed green lasers,” Opt. Lasers Eng. 40, 33–41 (2003).
[CrossRef]

2001 (3)

V. Slezak, “High-precision pulsed photoacoustic spectroscopy in NO2-N2,” Appl. Phys. B: Lasers Opt. 73, 751–755 (2001).
[CrossRef]

V. Sivakumaran, K. P. Subramanian, and V. Kumar, “Self-quenching and zero-pressure lifetime studies of NO2 at 465–490, 423–462 and 399–416 nm,” J. Quant. Spectrosc. Radiat. Transf. 69, 525–534 (2001).
[CrossRef]

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

2000 (1)

M. Paajanen, J. Lekkala, and K. Kirjavainen, “Electromechanical film (EMFi)–a new multipurpose electret material,” Sens. Actuators , A 84, 95–102 (2000).
[CrossRef]

1994 (1)

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
[CrossRef]

1991 (1)

G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991).
[CrossRef]

1977 (1)

1971 (1)

R. A. Gangi and L. Burnelle, “Electronic structure and electronic spectrum of nitrogen dioxide. III Spectral interpretation,” J. Chem. Phys. 55, 851–856 (1971).
[CrossRef]

Angeli, G. Z.

G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991).
[CrossRef]

Angelmahr, M.

J. Lima, H. Vargas, A. Mikls, M. Angelmahr, and P. Hess, “Photoacoustic detection of NO2 and N2O using quantum cascade lasers,” Appl. Phys. B: Lasers Opt. 85, 279–284 (2006).
[CrossRef]

Bakhirkin, Y.

A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004).
[CrossRef]

Barreiro, N.

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[CrossRef]

Bartlome, R.

R. Bartlome, M. Kaučikas, and M. W. Sigrist, “Modulated resonant versus pulsed resonant photoacoustics intrace gas detection,” Appl. Phys. B 96, 561–566 (2009).
[CrossRef]

Bernhardt, R.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[CrossRef]

Blaser, S.

A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004).
[CrossRef]

Bogumil, K.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Bonetti, Y.

A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004).
[CrossRef]

Bovensmann, H.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Bozoki, Z.

G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991).
[CrossRef]

Bozóki, Z.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

Burnelle, L.

R. A. Gangi and L. Burnelle, “Electronic structure and electronic spectrum of nitrogen dioxide. III Spectral interpretation,” J. Chem. Phys. 55, 851–856 (1971).
[CrossRef]

Burrows, J. P.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Calvert, J. G.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
[CrossRef]

Cantrell, C. A.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
[CrossRef]

Chen, W.

Claspy, P. C.

P. C. Claspy, C. Ha, and Y.-H. Pao, “Optoacoustic detection of NO2 using a pulsed dye laser,” Appl. Opt. 16, 2972–2973 (1977).
[CrossRef] [PubMed]

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

Demerjian, K. L.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
[CrossRef] [PubMed]

Dewey, C. F. j.

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

Dunayevskiy, I. G.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Fleischmann, O. C.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Frerick, J.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Gangi, R. A.

R. A. Gangi and L. Burnelle, “Electronic structure and electronic spectrum of nitrogen dioxide. III Spectral interpretation,” J. Chem. Phys. 55, 851–856 (1971).
[CrossRef]

Gao, X.

Gelbwachs, J. A.

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

Go, R.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Gonzalez, F.

G. D. Santiago, M. G. Gonzalez, A. L. Peuriot, F. Gonzalez, and V. B. Slezak, “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006).
[CrossRef]

Gonzalez, M. G.

G. D. Santiago, M. G. Gonzalez, A. L. Peuriot, F. Gonzalez, and V. B. Slezak, “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006).
[CrossRef]

Gonzlez, M. G.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[CrossRef]

Ha, C.

Hartmann, M.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Hernberg, R.

Herndon, S.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
[CrossRef] [PubMed]

Hess, P.

J. Lima, H. Vargas, A. Mikls, M. Angelmahr, and P. Hess, “Photoacoustic detection of NO2 and N2O using quantum cascade lasers,” Appl. Phys. B: Lasers Opt. 85, 279–284 (2006).
[CrossRef]

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

Homann, T.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Hvozdara, L.

A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004).
[CrossRef]

Kalkman, J.

J. Kalkman and H. van Kesteren, “Relaxation effects and high sensitivity photoacoustic detection of NO2 with a blue laser diode,” Appl. Phys. B: Lasers Opt. 90, 197–200 (2008).
[CrossRef]

Kaucikas, M.

R. Bartlome, M. Kaučikas, and M. W. Sigrist, “Modulated resonant versus pulsed resonant photoacoustics intrace gas detection,” Appl. Phys. B 96, 561–566 (2009).
[CrossRef]

Kelley, P. L.

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

Kirjavainen, K.

M. Paajanen, J. Lekkala, and K. Kirjavainen, “Electromechanical film (EMFi)–a new multipurpose electret material,” Sens. Actuators , A 84, 95–102 (2000).
[CrossRef]

Kolb, C. E.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
[CrossRef] [PubMed]

Kosterev, A.

A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004).
[CrossRef]

Kreuzer, L. B.

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

Kromminga, H.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Kumar, V.

V. Sivakumaran, K. P. Subramanian, and V. Kumar, “Self-quenching and zero-pressure lifetime studies of NO2 at 465–490, 423–462 and 399–416 nm,” J. Quant. Spectrosc. Radiat. Transf. 69, 525–534 (2001).
[CrossRef]

Lekkala, J.

M. Paajanen, J. Lekkala, and K. Kirjavainen, “Electromechanical film (EMFi)–a new multipurpose electret material,” Sens. Actuators , A 84, 95–102 (2000).
[CrossRef]

Lima, J.

J. Lima, H. Vargas, A. Mikls, M. Angelmahr, and P. Hess, “Photoacoustic detection of NO2 and N2O using quantum cascade lasers,” Appl. Phys. B: Lasers Opt. 85, 279–284 (2006).
[CrossRef]

Liu, K.

Lorincz, A.

G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991).
[CrossRef]

Manninen, A.

J. Saarela, J. Sand, T. Sorvajrvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[CrossRef]

A. Manninen, J. Sand, J. Saarela, T. Sorvajärvi, J. Toivonen, and R. Hernberg, “Electromechanical film as a photoacoustic transducer,” Opt. Express 17, 16994–16999 (2009).
[CrossRef] [PubMed]

Miklos, A.

G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991).
[CrossRef]

Miklós, A.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

Mikls, A.

J. Lima, H. Vargas, A. Mikls, M. Angelmahr, and P. Hess, “Photoacoustic detection of NO2 and N2O using quantum cascade lasers,” Appl. Phys. B: Lasers Opt. 85, 279–284 (2006).
[CrossRef]

Nelson, D. D.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
[CrossRef] [PubMed]

Orlando, J. J.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
[CrossRef]

Orphal, J.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Paajanen, M.

M. Paajanen, J. Lekkala, and K. Kirjavainen, “Electromechanical film (EMFi)–a new multipurpose electret material,” Sens. Actuators , A 84, 95–102 (2000).
[CrossRef]

Pao, Y.-H.

P. C. Claspy, C. Ha, and Y.-H. Pao, “Optoacoustic detection of NO2 using a pulsed dye laser,” Appl. Opt. 16, 2972–2973 (1977).
[CrossRef] [PubMed]

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

Patel, C. K. N.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Peuriot, A.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[CrossRef]

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[CrossRef]

Peuriot, A. L.

G. D. Santiago, M. G. Gonzalez, A. L. Peuriot, F. Gonzalez, and V. B. Slezak, “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006).
[CrossRef]

V. Slezak, G. Santiago, and A. L. Peuriot, “Photoacoustic detection of NO2 traces with CW and pulsed green lasers,” Opt. Lasers Eng. 40, 33–41 (2003).
[CrossRef]

Pushkarsky, M.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Robin, M. B.

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

Roehl, C. M.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
[CrossRef]

Rosencwaig, A.

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Robert E. Krieger Publishing Company, 1980).

Saarela, J.

J. Saarela, J. Sand, T. Sorvajrvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[CrossRef]

A. Manninen, J. Sand, J. Saarela, T. Sorvajärvi, J. Toivonen, and R. Hernberg, “Electromechanical film as a photoacoustic transducer,” Opt. Express 17, 16994–16999 (2009).
[CrossRef] [PubMed]

Sand, J.

J. Saarela, J. Sand, T. Sorvajrvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[CrossRef]

A. Manninen, J. Sand, J. Saarela, T. Sorvajärvi, J. Toivonen, and R. Hernberg, “Electromechanical film as a photoacoustic transducer,” Opt. Express 17, 16994–16999 (2009).
[CrossRef] [PubMed]

Santiago, G.

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[CrossRef]

V. Slezak, G. Santiago, and A. L. Peuriot, “Photoacoustic detection of NO2 traces with CW and pulsed green lasers,” Opt. Lasers Eng. 40, 33–41 (2003).
[CrossRef]

Santiago, G. D.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[CrossRef]

G. D. Santiago, M. G. Gonzalez, A. L. Peuriot, F. Gonzalez, and V. B. Slezak, “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006).
[CrossRef]

Shetter, R. E.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
[CrossRef]

Shorter, J. H.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
[CrossRef] [PubMed]

Sigrist, M. W.

R. Bartlome, M. Kaučikas, and M. W. Sigrist, “Modulated resonant versus pulsed resonant photoacoustics intrace gas detection,” Appl. Phys. B 96, 561–566 (2009).
[CrossRef]

G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991).
[CrossRef]

Sivakumaran, V.

V. Sivakumaran, K. P. Subramanian, and V. Kumar, “Self-quenching and zero-pressure lifetime studies of NO2 at 465–490, 423–462 and 399–416 nm,” J. Quant. Spectrosc. Radiat. Transf. 69, 525–534 (2001).
[CrossRef]

Slezak, V.

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[CrossRef]

V. Slezak, G. Santiago, and A. L. Peuriot, “Photoacoustic detection of NO2 traces with CW and pulsed green lasers,” Opt. Lasers Eng. 40, 33–41 (2003).
[CrossRef]

V. Slezak, “High-precision pulsed photoacoustic spectroscopy in NO2-N2,” Appl. Phys. B: Lasers Opt. 73, 751–755 (2001).
[CrossRef]

Slezak, V. B.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[CrossRef]

G. D. Santiago, M. G. Gonzalez, A. L. Peuriot, F. Gonzalez, and V. B. Slezak, “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006).
[CrossRef]

Sorvajärvi, T.

Sorvajrvi, T.

J. Saarela, J. Sand, T. Sorvajrvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[CrossRef]

Spietz, P.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Stettler, J. D.

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

Subramanian, K. P.

V. Sivakumaran, K. P. Subramanian, and V. Kumar, “Self-quenching and zero-pressure lifetime studies of NO2 at 465–490, 423–462 and 399–416 nm,” J. Quant. Spectrosc. Radiat. Transf. 69, 525–534 (2001).
[CrossRef]

Tan, T.

Thony, A.

G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991).
[CrossRef]

Tittel, F.

A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004).
[CrossRef]

Toivonen, J.

J. Saarela, J. Sand, T. Sorvajrvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[CrossRef]

A. Manninen, J. Sand, J. Saarela, T. Sorvajärvi, J. Toivonen, and R. Hernberg, “Electromechanical film as a photoacoustic transducer,” Opt. Express 17, 16994–16999 (2009).
[CrossRef] [PubMed]

Tsekoun, A.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Tyndall, G. S.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
[CrossRef]

Vallespi, A.

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[CrossRef]

van Kesteren, H.

J. Kalkman and H. van Kesteren, “Relaxation effects and high sensitivity photoacoustic detection of NO2 with a blue laser diode,” Appl. Phys. B: Lasers Opt. 90, 197–200 (2008).
[CrossRef]

Vargas, H.

J. Lima, H. Vargas, A. Mikls, M. Angelmahr, and P. Hess, “Photoacoustic detection of NO2 and N2O using quantum cascade lasers,” Appl. Phys. B: Lasers Opt. 85, 279–284 (2006).
[CrossRef]

Vazquez, G. J.

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
[CrossRef]

Vogel, A.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Voigt, S.

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

Wang, L.

Witiriol, N. M.

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

Wormhoudt, J.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
[CrossRef] [PubMed]

Yi, H.

Zahniser, M. S.

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Bartlome, M. Kaučikas, and M. W. Sigrist, “Modulated resonant versus pulsed resonant photoacoustics intrace gas detection,” Appl. Phys. B 96, 561–566 (2009).
[CrossRef]

Appl. Phys. B: Lasers Opt. (5)

V. Slezak, “High-precision pulsed photoacoustic spectroscopy in NO2-N2,” Appl. Phys. B: Lasers Opt. 73, 751–755 (2001).
[CrossRef]

J. Kalkman and H. van Kesteren, “Relaxation effects and high sensitivity photoacoustic detection of NO2 with a blue laser diode,” Appl. Phys. B: Lasers Opt. 90, 197–200 (2008).
[CrossRef]

J. Lima, H. Vargas, A. Mikls, M. Angelmahr, and P. Hess, “Photoacoustic detection of NO2 and N2O using quantum cascade lasers,” Appl. Phys. B: Lasers Opt. 85, 279–284 (2006).
[CrossRef]

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[CrossRef]

A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, “Photoacoustic phase shift as a chemically selective spectroscopic parameter,” Appl. Phys. B: Lasers Opt. 78, 673–676 (2004).
[CrossRef]

Environ. Sci. Technol. (1)

J. H. Shorter, S. Herndon, M. S. Zahniser, D. D. Nelson, J. Wormhoudt, K. L. Demerjian, and C. E. Kolb, “Real-time measurements of nitrogen oxide emissions from in-use New York City Transit buses using a chase vehicle,” Environ. Sci. Technol. 39, 7991–8000 (2005).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

R. A. Gangi and L. Burnelle, “Electronic structure and electronic spectrum of nitrogen dioxide. III Spectral interpretation,” J. Chem. Phys. 55, 851–856 (1971).
[CrossRef]

C. M. Roehl, J. J. Orlando, G. S. Tyndall, R. E. Shetter, G. J. Vazquez, C. A. Cantrell, and J. G. Calvert, “Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit,” J. Chem. Phys. 98, 7837–7843 (1994).
[CrossRef]

J. Photochem. Photobiol. (1)

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-fight model: instrument characterization and reference data for atmospheric remote-sensing in the 2302380 nm region,” J. Photochem. Photobiol. , A 157, 167–184 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

V. Sivakumaran, K. P. Subramanian, and V. Kumar, “Self-quenching and zero-pressure lifetime studies of NO2 at 465–490, 423–462 and 399–416 nm,” J. Quant. Spectrosc. Radiat. Transf. 69, 525–534 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

V. Slezak, G. Santiago, and A. L. Peuriot, “Photoacoustic detection of NO2 traces with CW and pulsed green lasers,” Opt. Lasers Eng. 40, 33–41 (2003).
[CrossRef]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

G. D. Santiago, M. G. Gonzalez, A. L. Peuriot, F. Gonzalez, and V. B. Slezak, “Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2,” Rev. Sci. Instrum. 77, 023108 (2006).
[CrossRef]

G. Z. Angeli, Z. Bozoki, A. Miklos, A. Lorincz, A. Thony, and M. W. Sigrist, “Design and characterization of a windowless resonant photoacoustic chamber equipped with resonance locking circuitry,” Rev. Sci. Instrum. 62, 810–813 (1991).
[CrossRef]

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

Sens. Actuators (1)

M. Paajanen, J. Lekkala, and K. Kirjavainen, “Electromechanical film (EMFi)–a new multipurpose electret material,” Sens. Actuators , A 84, 95–102 (2000).
[CrossRef]

Sens. Actuators B (1)

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[CrossRef]

Sensors (1)

J. Saarela, J. Sand, T. Sorvajrvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[CrossRef]

Other (4)

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Robert E. Krieger Publishing Company, 1980).

“Our Nation’s Air–Status and Trends through 2008,” Tech. Rep. , U.S. Environmental Protection Agency (2010).

Y.-H. Pao, P. C. Claspy, C. F. j. Dewey, J. A. Gelbwachs, P. L. Kelley, L. B. Kreuzer, M. B. Robin, A. Rosencwaig, J. D. Stettler, and N. M. Witiriol, Optoacoustic Spectroscopy and Detection (Academic Press, Inc., 1977).

A. Manninen, “Pulsed Laser Spectroscopy: Bioaerosol Fluorescence and Gas-Phase Photoacoustics,” Ph.D. thesis, Tampere University of Technology (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photoacoustic (PA) cell. Ten blue (453 nm) high-power LEDs are attached to the central part of the cell to excite acoustic waves at the second longitudinal mode when NO2 is present. NO2 monitoring is accomplished by measuring the difference of the opposite-phase PA signals of two EMFIT film microphones.

Fig. 2
Fig. 2

Absorption cross-section of nitrogen dioxide [17], and the emission spectrum of a high-power LED.

Fig. 3
Fig. 3

Generation of the difference PA signal. (a) The resultant signal has only components of PA origin. Background-free measurement of NO2 is achieved from the imaginary component. (b) Measured PA backgrounds from an empty (N2-filled) cell. At the resonance of the PA cell (3940 Hz) the imaginary component of the PA background signal is reduced to the combined noise level of the two microphones.

Fig. 4
Fig. 4

PA signal as a function of NO2 concentration. Open circles represent the PA signal in the presence of 3.5 mV background. The linear dynamic range is extended to the noise floor by measuring the imaginary component of the PA difference signal. The detection limit with 2.1 s acquisition time is 10 ppb. Inset: Phase of the resultant PA signal. Due to the phase difference θ = 130° background-free measurement of NO2 is achieved from the imaginary component.

Fig. 5
Fig. 5

Imaginary part of the PA signal as a function of time, measured from a constant 3 ppm NO2 concentration (a), and the corresponding signal frequencies (b). The PA cell is heated by the high-power LEDs from 25°C to 40°C, causing the resonance frequency to drift to higher frequencies. Without resonance tracking the PA signal is lost (red curves). The resonance tracking enables continuous monitoring of NO2 (black curves). The increase in PA signal is related to temperature-dependent sensitivity of the microphones.

Metrics