Abstract

In this paper, laterally arranged multiple bandgap (LAMB) solar cells based on CdxPb1-xS alloy nanowires of varying composition on a single substrate are designed to be used together with a dispersive concentrator. Simulation results for a design with six subcells in series connection are presented. The design is based on a unique materials capability achieved in our recent research. An efficiency of 34.9% was obtained for operation without solar concentration, which increased to 40.5%, 41.7%, and 42.7% for concentration ratios of 25, 100, and 240 respectively. The device was also simulated with decreased carrier mobilities to model the possible reduction in absorber conductivity, depending on the nanowire geometry and configuration. For a concentration ratio of unity, decreasing the mobilities to 25% of their original values caused less than a 2.5% absolute drop in efficiency. The LAMB design offers the advantages of an integrated cell platform and the potential for low-cost, high efficiency photovoltaic systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer-Verlag, 2006).
  2. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 35),” Prog. Photovolt. Res. Appl. 18(2), 144–150 (2010).
    [CrossRef]
  3. N. A. Gokcen and J. J. Loferski, “Efficiency of tandem solar cell systems as a function of temperature and solar energy concentration ratio,” Sol. Energy Mater. 1(3-4), 271–286 (1979).
    [CrossRef]
  4. W. H. Bloss, M. Griesinger, and E. R. Reinhardt, “Dispersive concentrating systems based on transmission phase holograms for solar applications,” Appl. Opt. 21(20), 3739–3742 (1982).
    [CrossRef] [PubMed]
  5. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emergy, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, T. Moriarty, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, and N. Shatz, “Milestones toward 50% efficiency solar cell modules,” Presented at the 22nd European Photovoltaic Solar Energy Conference (Institute of Electrical and Electronics Engineers, Milan, Italy, 2007).
  6. A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
    [CrossRef] [PubMed]
  7. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
    [CrossRef] [PubMed]
  8. A. L. Pan, R. B. Liu, M. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4(2), 671–680 (2010).
    [CrossRef] [PubMed]
  9. C. Z. Ning, A. L. Pan, and R. B. Liu, “Spatially composition-graded alloy semiconductor nanowires and wavelength specific lateral-multijunction full-spectrum solar cells,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, Philadelphia, Pennsylvania, 2009), pp. 001492–001495.
  10. J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
    [CrossRef]
  11. J. R. Riccobono, H. J. Caulfield, and J. E. Ludman, Holography for the New Millennium (Springer-Verlag, 2002).
  12. ATLAS, version 5.15.34.C, Silvaco Data Systems, Inc.: 2009.
  13. H. Rahnamai and J. N. Zemel, “PbS – Si heterojunction II: electrical properties,” Thin Solid Films 74(1), 17–22 (1980).
    [CrossRef]
  14. Z. Liu, J. H. Kim, G. E. Fernandes, and J. Xu, “Room temperature photocurrent response of PbS/InP heterojunction,” Appl. Phys. Lett. 95(23), 231113 (2009).
    [CrossRef]
  15. ATLAS User’s Manual: Device Simulation Software (SILVACO International, 2007).
  16. T. L. Chu and S. S. Chu, “Thin film II-VI photovoltaics,” Solid-State Electron. 38(3), 533–549 (1995).
    [CrossRef]
  17. E. Kymakis and G. A. Amaratunga, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices,” Appl. Phys. Lett. 80(1), 112–114 (2002).
    [CrossRef]
  18. U. V. Desnica, “Doping limits in II-VI compounds – challenges, problems and solutions,” Prog. Cryst. Growth Charact. Mater. 36(4), 291–357 (1998).
    [CrossRef]
  19. Y. Imai, A. Watanabe, and I. Shimono, “Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopotential method,” J. Mater. Sci. Mater. Electron. 14(3), 149–156 (2003).
    [CrossRef]
  20. H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000).
    [CrossRef]
  21. A. Mondal, B. E. McCandless, and R. W. Birkmire, “Electrochemical deposition of thin ZnTe films as a contact for CdTe solar cells,” Sol. Energy Mater. Sol. Cells 26(3), 181–187 (1992).
    [CrossRef]
  22. D. J. Friedman and J. M. Olson, “Analysis of Ge Junctions for GaInP/GaAs/Ge Three-junction Solar Cells,” Prog. Photovolt. Res. Appl. 9(3), 179–189 (2001).
    [CrossRef]
  23. K. Emery and D. Meyers, “Solar Spectral Irradiance: Air Mass 1.5” (National Renewable Energy Laboratory, 2009). http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  24. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [CrossRef] [PubMed]
  25. N. Lagos, M. M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct. Fundam. Appl. 9(2), 163–167 (2011), doi:.
    [CrossRef]
  26. M. M. Sigalas, Institute of Materials Science, N.C.S.R “Demokritos” Agia Paraskevi, 15310 Athens, Greece (personal communication, 2010).
  27. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
    [CrossRef]
  28. Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
    [CrossRef]
  29. P. Yang and F. Kim, “Langmuir-Blodgett assembly of one-dimensional nanostructures,” ChemPhysChem 3(6), 503–506 (2002).
    [CrossRef] [PubMed]
  30. Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
    [CrossRef] [PubMed]

2011 (1)

N. Lagos, M. M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct. Fundam. Appl. 9(2), 163–167 (2011), doi:.
[CrossRef]

2010 (3)

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 35),” Prog. Photovolt. Res. Appl. 18(2), 144–150 (2010).
[CrossRef]

A. L. Pan, R. B. Liu, M. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4(2), 671–680 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

2009 (3)

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Z. Liu, J. H. Kim, G. E. Fernandes, and J. Xu, “Room temperature photocurrent response of PbS/InP heterojunction,” Appl. Phys. Lett. 95(23), 231113 (2009).
[CrossRef]

A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

2008 (1)

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[CrossRef]

2007 (2)

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

2003 (1)

Y. Imai, A. Watanabe, and I. Shimono, “Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopotential method,” J. Mater. Sci. Mater. Electron. 14(3), 149–156 (2003).
[CrossRef]

2002 (2)

E. Kymakis and G. A. Amaratunga, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices,” Appl. Phys. Lett. 80(1), 112–114 (2002).
[CrossRef]

P. Yang and F. Kim, “Langmuir-Blodgett assembly of one-dimensional nanostructures,” ChemPhysChem 3(6), 503–506 (2002).
[CrossRef] [PubMed]

2001 (1)

D. J. Friedman and J. M. Olson, “Analysis of Ge Junctions for GaInP/GaAs/Ge Three-junction Solar Cells,” Prog. Photovolt. Res. Appl. 9(3), 179–189 (2001).
[CrossRef]

2000 (1)

H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000).
[CrossRef]

1998 (1)

U. V. Desnica, “Doping limits in II-VI compounds – challenges, problems and solutions,” Prog. Cryst. Growth Charact. Mater. 36(4), 291–357 (1998).
[CrossRef]

1997 (1)

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

1995 (1)

T. L. Chu and S. S. Chu, “Thin film II-VI photovoltaics,” Solid-State Electron. 38(3), 533–549 (1995).
[CrossRef]

1992 (1)

A. Mondal, B. E. McCandless, and R. W. Birkmire, “Electrochemical deposition of thin ZnTe films as a contact for CdTe solar cells,” Sol. Energy Mater. Sol. Cells 26(3), 181–187 (1992).
[CrossRef]

1982 (1)

1980 (1)

H. Rahnamai and J. N. Zemel, “PbS – Si heterojunction II: electrical properties,” Thin Solid Films 74(1), 17–22 (1980).
[CrossRef]

1979 (1)

N. A. Gokcen and J. J. Loferski, “Efficiency of tandem solar cell systems as a function of temperature and solar energy concentration ratio,” Sol. Energy Mater. 1(3-4), 271–286 (1979).
[CrossRef]

Ager, J. W.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Alley, R. L.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[CrossRef]

Aloni, S.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Amaratunga, G. A.

E. Kymakis and G. A. Amaratunga, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices,” Appl. Phys. Lett. 80(1), 112–114 (2002).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Birkmire, R. W.

A. Mondal, B. E. McCandless, and R. W. Birkmire, “Electrochemical deposition of thin ZnTe films as a contact for CdTe solar cells,” Sol. Energy Mater. Sol. Cells 26(3), 181–187 (1992).
[CrossRef]

Bloss, W. H.

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Chin, A. H.

A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Chu, S. S.

T. L. Chu and S. S. Chu, “Thin film II-VI photovoltaics,” Solid-State Electron. 38(3), 533–549 (1995).
[CrossRef]

Chu, T. L.

T. L. Chu and S. S. Chu, “Thin film II-VI photovoltaics,” Solid-State Electron. 38(3), 533–549 (1995).
[CrossRef]

Chueh, Y. L.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Desnica, U. V.

U. V. Desnica, “Doping limits in II-VI compounds – challenges, problems and solutions,” Prog. Cryst. Growth Charact. Mater. 36(4), 291–357 (1998).
[CrossRef]

Do, J. W.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Edmondson, K. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 35),” Prog. Photovolt. Res. Appl. 18(2), 144–150 (2010).
[CrossRef]

Ergen, O.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Fan, Z.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[CrossRef]

Fernandes, G. E.

Z. Liu, J. H. Kim, G. E. Fernandes, and J. Xu, “Room temperature photocurrent response of PbS/InP heterojunction,” Appl. Phys. Lett. 95(23), 231113 (2009).
[CrossRef]

Fetzer, C. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Friedman, D. J.

D. J. Friedman and J. M. Olson, “Analysis of Ge Junctions for GaInP/GaAs/Ge Three-junction Solar Cells,” Prog. Photovolt. Res. Appl. 9(3), 179–189 (2001).
[CrossRef]

Gokcen, N. A.

N. A. Gokcen and J. J. Loferski, “Efficiency of tandem solar cell systems as a function of temperature and solar energy concentration ratio,” Sol. Energy Mater. 1(3-4), 271–286 (1979).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 35),” Prog. Photovolt. Res. Appl. 18(2), 144–150 (2010).
[CrossRef]

Griesinger, M.

Hirano, M.

H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 35),” Prog. Photovolt. Res. Appl. 18(2), 144–150 (2010).
[CrossRef]

Ho, J. C.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[CrossRef]

Hosono, H.

H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000).
[CrossRef]

Imai, Y.

Y. Imai, A. Watanabe, and I. Shimono, “Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopotential method,” J. Mater. Sci. Mater. Electron. 14(3), 149–156 (2003).
[CrossRef]

Jacobson, Z. A.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[CrossRef]

Javey, A.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[CrossRef]

Karam, N. H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kawazoe, H.

H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Kim, F.

P. Yang and F. Kim, “Langmuir-Blodgett assembly of one-dimensional nanostructures,” ChemPhysChem 3(6), 503–506 (2002).
[CrossRef] [PubMed]

Kim, J. H.

Z. Liu, J. H. Kim, G. E. Fernandes, and J. Xu, “Room temperature photocurrent response of PbS/InP heterojunction,” Appl. Phys. Lett. 95(23), 231113 (2009).
[CrossRef]

King, R. R.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kinsey, G. S.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kuykendall, T.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Kymakis, E.

E. Kymakis and G. A. Amaratunga, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices,” Appl. Phys. Lett. 80(1), 112–114 (2002).
[CrossRef]

Lagos, N.

N. Lagos, M. M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct. Fundam. Appl. 9(2), 163–167 (2011), doi:.
[CrossRef]

Law, D. C.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Leong, E. S. P.

A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Leu, P. W.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Li, X.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Liu, R. B.

A. L. Pan, R. B. Liu, M. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4(2), 671–680 (2010).
[CrossRef] [PubMed]

A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, J. H. Kim, G. E. Fernandes, and J. Xu, “Room temperature photocurrent response of PbS/InP heterojunction,” Appl. Phys. Lett. 95(23), 231113 (2009).
[CrossRef]

Loferski, J. J.

N. A. Gokcen and J. J. Loferski, “Efficiency of tandem solar cell systems as a function of temperature and solar energy concentration ratio,” Sol. Energy Mater. 1(3-4), 271–286 (1979).
[CrossRef]

Ludman, J. E.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Martín, J.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

McCandless, B. E.

A. Mondal, B. E. McCandless, and R. W. Birkmire, “Electrochemical deposition of thin ZnTe films as a contact for CdTe solar cells,” Sol. Energy Mater. Sol. Cells 26(3), 181–187 (1992).
[CrossRef]

Mondal, A.

A. Mondal, B. E. McCandless, and R. W. Birkmire, “Electrochemical deposition of thin ZnTe films as a contact for CdTe solar cells,” Sol. Energy Mater. Sol. Cells 26(3), 181–187 (1992).
[CrossRef]

Moriwaki, A.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Neale, S.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Niarchos, D.

N. Lagos, M. M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct. Fundam. Appl. 9(2), 163–167 (2011), doi:.
[CrossRef]

Ning, C. Z.

A. L. Pan, R. B. Liu, M. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4(2), 671–680 (2010).
[CrossRef] [PubMed]

A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Ohta, H.

H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000).
[CrossRef]

Olson, J. M.

D. J. Friedman and J. M. Olson, “Analysis of Ge Junctions for GaInP/GaAs/Ge Three-junction Solar Cells,” Prog. Photovolt. Res. Appl. 9(3), 179–189 (2001).
[CrossRef]

Orita, M.

H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000).
[CrossRef]

Pan, A. L.

A. L. Pan, R. B. Liu, M. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4(2), 671–680 (2010).
[CrossRef] [PubMed]

A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Rahnamai, H.

H. Rahnamai and J. N. Zemel, “PbS – Si heterojunction II: electrical properties,” Thin Solid Films 74(1), 17–22 (1980).
[CrossRef]

Rallis, E.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Razavi, H.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[CrossRef]

Reichertz, L. A.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Reinhand, N. O.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Reinhardt, E. R.

Riccobono, J.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Semenova, I. V.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Sherif, R. A.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Shimono, I.

Y. Imai, A. Watanabe, and I. Shimono, “Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopotential method,” J. Mater. Sci. Mater. Electron. 14(3), 149–156 (2003).
[CrossRef]

Sigalas, M. M.

N. Lagos, M. M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct. Fundam. Appl. 9(2), 163–167 (2011), doi:.
[CrossRef]

Sliker, G.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Sun, M.

A. L. Pan, R. B. Liu, M. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4(2), 671–680 (2010).
[CrossRef] [PubMed]

Syphers, G.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Tai, W.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Takahashi, T.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Tanji, H.

H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Ulrich, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 35),” Prog. Photovolt. Res. Appl. 18(2), 144–150 (2010).
[CrossRef]

Watanabe, A.

Y. Imai, A. Watanabe, and I. Shimono, “Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopotential method,” J. Mater. Sci. Mater. Electron. 14(3), 149–156 (2003).
[CrossRef]

Wu, M.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Xu, J.

Z. Liu, J. H. Kim, G. E. Fernandes, and J. Xu, “Room temperature photocurrent response of PbS/InP heterojunction,” Appl. Phys. Lett. 95(23), 231113 (2009).
[CrossRef]

Yang, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

P. Yang and F. Kim, “Langmuir-Blodgett assembly of one-dimensional nanostructures,” ChemPhysChem 3(6), 503–506 (2002).
[CrossRef] [PubMed]

Yerushalmi, R.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[CrossRef]

Yoon, H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Yu, K.

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Zemel, J. N.

H. Rahnamai and J. N. Zemel, “PbS – Si heterojunction II: electrical properties,” Thin Solid Films 74(1), 17–22 (1980).
[CrossRef]

Zhou, W.

A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Zou, B.

A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

A. L. Pan, R. B. Liu, M. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4(2), 671–680 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Z. Liu, J. H. Kim, G. E. Fernandes, and J. Xu, “Room temperature photocurrent response of PbS/InP heterojunction,” Appl. Phys. Lett. 95(23), 231113 (2009).
[CrossRef]

E. Kymakis and G. A. Amaratunga, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices,” Appl. Phys. Lett. 80(1), 112–114 (2002).
[CrossRef]

H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett. 76(19), 2740–2742 (2000).
[CrossRef]

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP / GaInAs / Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

ChemPhysChem (1)

P. Yang and F. Kim, “Langmuir-Blodgett assembly of one-dimensional nanostructures,” ChemPhysChem 3(6), 503–506 (2002).
[CrossRef] [PubMed]

J. Mater. Sci. Mater. Electron. (1)

Y. Imai, A. Watanabe, and I. Shimono, “Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopotential method,” J. Mater. Sci. Mater. Electron. 14(3), 149–156 (2003).
[CrossRef]

Nano Lett. (2)

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[CrossRef]

A. L. Pan, W. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009).
[CrossRef] [PubMed]

Nat. Mater. (3)

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Photon. Nanostruct. Fundam. Appl. (1)

N. Lagos, M. M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct. Fundam. Appl. 9(2), 163–167 (2011), doi:.
[CrossRef]

Prog. Cryst. Growth Charact. Mater. (1)

U. V. Desnica, “Doping limits in II-VI compounds – challenges, problems and solutions,” Prog. Cryst. Growth Charact. Mater. 36(4), 291–357 (1998).
[CrossRef]

Prog. Photovolt. Res. Appl. (2)

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 35),” Prog. Photovolt. Res. Appl. 18(2), 144–150 (2010).
[CrossRef]

D. J. Friedman and J. M. Olson, “Analysis of Ge Junctions for GaInP/GaAs/Ge Three-junction Solar Cells,” Prog. Photovolt. Res. Appl. 9(3), 179–189 (2001).
[CrossRef]

Sol. Energy (1)

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[CrossRef]

Sol. Energy Mater. (1)

N. A. Gokcen and J. J. Loferski, “Efficiency of tandem solar cell systems as a function of temperature and solar energy concentration ratio,” Sol. Energy Mater. 1(3-4), 271–286 (1979).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

A. Mondal, B. E. McCandless, and R. W. Birkmire, “Electrochemical deposition of thin ZnTe films as a contact for CdTe solar cells,” Sol. Energy Mater. Sol. Cells 26(3), 181–187 (1992).
[CrossRef]

Solid-State Electron. (1)

T. L. Chu and S. S. Chu, “Thin film II-VI photovoltaics,” Solid-State Electron. 38(3), 533–549 (1995).
[CrossRef]

Thin Solid Films (1)

H. Rahnamai and J. N. Zemel, “PbS – Si heterojunction II: electrical properties,” Thin Solid Films 74(1), 17–22 (1980).
[CrossRef]

Other (8)

M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer-Verlag, 2006).

J. R. Riccobono, H. J. Caulfield, and J. E. Ludman, Holography for the New Millennium (Springer-Verlag, 2002).

ATLAS, version 5.15.34.C, Silvaco Data Systems, Inc.: 2009.

ATLAS User’s Manual: Device Simulation Software (SILVACO International, 2007).

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emergy, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, T. Moriarty, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, and N. Shatz, “Milestones toward 50% efficiency solar cell modules,” Presented at the 22nd European Photovoltaic Solar Energy Conference (Institute of Electrical and Electronics Engineers, Milan, Italy, 2007).

C. Z. Ning, A. L. Pan, and R. B. Liu, “Spatially composition-graded alloy semiconductor nanowires and wavelength specific lateral-multijunction full-spectrum solar cells,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, Philadelphia, Pennsylvania, 2009), pp. 001492–001495.

K. Emery and D. Meyers, “Solar Spectral Irradiance: Air Mass 1.5” (National Renewable Energy Laboratory, 2009). http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .

M. M. Sigalas, Institute of Materials Science, N.C.S.R “Demokritos” Agia Paraskevi, 15310 Athens, Greece (personal communication, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conceptual schematic of a LAMB solar cell with a spectral splitting concentration optics layer.

Fig. 2
Fig. 2

LAMB solar cell structure with n-ZnS/ITO n-contacts and p-ZnTe or p-Ge p-contacts to undoped CdxPb1-xS nanowires.

Fig. 3
Fig. 3

Energy band lineup of CdxPb1-xS nanowires with the contact materials across all subcells according to Anderson’s Model. Note that the Fermi levels of the CdxPb1-xS nanowires assume intrinsic material.

Fig. 4
Fig. 4

Current-voltage characteristics of all subcells at varying levels of solar concentration.

Fig. 5
Fig. 5

Energy band diagrams at the maximum power point under one sun illumination.

Tables (2)

Tables Icon

Table 1 CdxPb1-xS Composition and Material Data by Subcell

Tables Icon

Table 2 Efficiencies at Various Levels of Solar Concentration and with Carrier Mobilities at 100%, 50%, and 25% of their Original Values

Metrics