Abstract

In this paper, Ag-Au alloy nanoparticles (NPs) were fabricated by dewetting process to enhance the broadband antireflection performance of textured silicon surfaces. The alloy NPs presented a large range of shapes and sizes, which provided an average reflectance (AR) below 4% over the spectral range of 300~1200 nm, a decrease of ~50% and ~90% as compared to the corresponding monometallic NPs and the original flat Si surfaces, respectively. The superior broadband antireflection demonstrated by the alloy NPs are attributed to the enhanced light trapping by alloy nanoparticle plasmon resonance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
  2. L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
    [CrossRef]
  3. J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  4. C. B. Honsberg and S. R. Wenham, “New insights gained through pilot production of high-efficiency silicon solar cells,” Prog. Photovolt. Res. Appl. 3(2), 79–87 (1995).
    [CrossRef]
  5. N. V. Tabiryan, S. R. Nersisyan, and M. Warenghem, “Interaction of light with a transversely moving nonlinear medium: beyond Doppler laser velocimetry,” J. Appl. Phys. 83(1), 1 (1998).
    [CrossRef]
  6. H. Jansen, M. Deboer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectron. Eng. 27(1-4), 475–480 (1995).
    [CrossRef]
  7. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
  8. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
    [CrossRef]
  9. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  10. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  11. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  12. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  13. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
    [CrossRef]
  14. D. Wu and X. Liu, “Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo,” Appl. Phys. Lett. 97(6), 061904 (2010).
    [CrossRef]
  15. M. Li, Z. S. Zhang, X. Zhang, K. Y. Li, and X. F. Yu, “Optical properties of Au/Ag core/shell nanoshuttles,” Opt. Express 16(18), 14288–14293 (2008).
    [CrossRef] [PubMed]
  16. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008).
    [CrossRef] [PubMed]
  17. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]

2010 (3)

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

D. Wu and X. Liu, “Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo,” Appl. Phys. Lett. 97(6), 061904 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

2009 (2)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

2008 (5)

2007 (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

2006 (1)

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

2004 (1)

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).

1998 (1)

N. V. Tabiryan, S. R. Nersisyan, and M. Warenghem, “Interaction of light with a transversely moving nonlinear medium: beyond Doppler laser velocimetry,” J. Appl. Phys. 83(1), 1 (1998).
[CrossRef]

1995 (2)

H. Jansen, M. Deboer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectron. Eng. 27(1-4), 475–480 (1995).
[CrossRef]

C. B. Honsberg and S. R. Wenham, “New insights gained through pilot production of high-efficiency silicon solar cells,” Prog. Photovolt. Res. Appl. 3(2), 79–87 (1995).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Beck, F.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Beck, F. J.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Burger, J.

H. Jansen, M. Deboer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectron. Eng. 27(1-4), 475–480 (1995).
[CrossRef]

Campbell, P.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Carey, J. E.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).

Catchpole, K. R.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Chen, M.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Cheung, H. W.

Crouch, C. H.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).

Deboer, M.

H. Jansen, M. Deboer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectron. Eng. 27(1-4), 475–480 (1995).
[CrossRef]

Ding, X.

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Elwenspoek, M.

H. Jansen, M. Deboer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectron. Eng. 27(1-4), 475–480 (1995).
[CrossRef]

Ge, J.

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

Génin, F. Y.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).

Green, M. A.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hong, M. H.

Honsberg, C. B.

C. B. Honsberg and S. R. Wenham, “New insights gained through pilot production of high-efficiency silicon solar cells,” Prog. Photovolt. Res. Appl. 3(2), 79–87 (1995).
[CrossRef]

Hor, T. S. A.

Hou, X.

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

Huang, Z. Q.

Jansen, H.

H. Jansen, M. Deboer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectron. Eng. 27(1-4), 475–480 (1995).
[CrossRef]

Jia, F.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Jiang, N.

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

Kim, J.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kunz, O.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Legtenberg, R.

H. Jansen, M. Deboer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectron. Eng. 27(1-4), 475–480 (1995).
[CrossRef]

Li, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Li, K. Y.

Li, M.

Li, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Lin, S.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, C. H.

Liu, W.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, X.

D. Wu and X. Liu, “Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo,” Appl. Phys. Lett. 97(6), 061904 (2010).
[CrossRef]

Lu, W.

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

Lu, X.

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Ma, L.

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

Mazur, E.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).

Nersisyan, S. R.

N. V. Tabiryan, S. R. Nersisyan, and M. Warenghem, “Interaction of light with a transversely moving nonlinear medium: beyond Doppler laser velocimetry,” J. Appl. Phys. 83(1), 1 (1998).
[CrossRef]

Ouyang, Z.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Pillai, S.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Schubert, E.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shao, J.

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

Shen, M.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).

Smart, J.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Sun, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Tabiryan, N. V.

N. V. Tabiryan, S. R. Nersisyan, and M. Warenghem, “Interaction of light with a transversely moving nonlinear medium: beyond Doppler laser velocimetry,” J. Appl. Phys. 83(1), 1 (1998).
[CrossRef]

Tan, L. S.

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Varlamov, S.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Wang, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Warenghem, M.

N. V. Tabiryan, S. R. Nersisyan, and M. Warenghem, “Interaction of light with a transversely moving nonlinear medium: beyond Doppler laser velocimetry,” J. Appl. Phys. 83(1), 1 (1998).
[CrossRef]

Wenham, S. R.

C. B. Honsberg and S. R. Wenham, “New insights gained through pilot production of high-efficiency silicon solar cells,” Prog. Photovolt. Res. Appl. 3(2), 79–87 (1995).
[CrossRef]

Wu, D.

D. Wu and X. Liu, “Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo,” Appl. Phys. Lett. 97(6), 061904 (2010).
[CrossRef]

Xi, J.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Yu, X. F.

Zhang, F.

Zhang, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Zhang, L.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Zhang, X.

Zhang, Z. S.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhou, Y.

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

Zhu, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Adv. Mater. (1)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).

Appl. Phys. Lett. (4)

L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

D. Wu and X. Liu, “Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo,” Appl. Phys. Lett. 97(6), 061904 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).

J. Appl. Phys. (3)

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

N. V. Tabiryan, S. R. Nersisyan, and M. Warenghem, “Interaction of light with a transversely moving nonlinear medium: beyond Doppler laser velocimetry,” J. Appl. Phys. 83(1), 1 (1998).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Microelectron. Eng. (1)

H. Jansen, M. Deboer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectron. Eng. 27(1-4), 475–480 (1995).
[CrossRef]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Express (3)

Prog. Photovolt. Res. Appl. (1)

C. B. Honsberg and S. R. Wenham, “New insights gained through pilot production of high-efficiency silicon solar cells,” Prog. Photovolt. Res. Appl. 3(2), 79–87 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross-section schematics of NPs on (a) flat and (b) textured Si substrates.

Fig. 2
Fig. 2

SEM images (a-c) and size distribution (d-f) of NPs on flat Si surfaces, NPs size formed by thermal annealing of (a, d) 30 nm Ag, (b, e) 15 nm Au, and (c, f) 15nm-Au/30nm-Ag thin films.

Fig. 3
Fig. 3

Measured reflection spectra of flat Si surfaces coated with metallic NPs, NPs are formed by thermal dewetting of 30 nm Ag, 15 nm Au, and 15nm-Au/30nm-Ag thin films.

Fig. 4
Fig. 4

SEM images of NPs formed on laser-textured Si surfaces, NPs formed by thermal annealing of (a) 30 nm Ag, (b) 15 nm Au, and (d) 15nm-Au/30nm-Ag thin films.

Fig. 5
Fig. 5

Measured reflection spectra of laser-textured Si surfaces coated without and with NPs (Ag, Au, and Ag-Au). NPs were formed by the annealing of 30 nm Ag, 15 nm Au, and 15nm-Au/30nm-Ag thin films, (Inset) NPs were formed by the annealing of 50 nm Ag, 10 nm Au, and 10nm-Au/50nm-Ag thin films.

Tables (1)

Tables Icon

Table 1. Morphological Parameters and Optical Performance of NPs on Flat Si Surfaces a

Metrics