Abstract

We developed a novel GaAs subwavelength structure (SWS) as an antireflective layer for solar cell applications. The GaAs SWS patterns were fabricated by a combination of nanosphere lithography (NSL) and reactive ion etching (RIE). The shape and height of the GaAs SWS were controlled by the diameter of the SiO2 nanospheres and the etching time. Various GaAs SWS were characterized by the reflectance spectra. The average reflectance of the polished GaAs substrate from 200nm to 800nm was 35.1%. However, the average reflectance of the tapered GaAs SWS was reduced to 0.6% due to scattering and moth-eye effects.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
    [CrossRef]
  2. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
    [CrossRef]
  3. Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34(11), 1702–1704 (2009).
    [CrossRef] [PubMed]
  4. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
    [CrossRef]
  5. K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
    [CrossRef]
  6. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.) 29(7), 993–1009 (1982).
    [CrossRef]
  7. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
    [CrossRef]
  8. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
    [CrossRef] [PubMed]
  9. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
    [CrossRef]
  10. Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
    [CrossRef]
  11. J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
    [CrossRef]
  12. R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
    [CrossRef]
  13. J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
    [CrossRef]
  14. B. J. Kim, H. Jung, H. Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films 517(14), 3859–3861 (2009).
    [CrossRef]
  15. B. J. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
    [CrossRef]
  16. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [CrossRef]

2010

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

B. J. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[CrossRef]

2009

B. J. Kim, H. Jung, H. Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films 517(14), 3859–3861 (2009).
[CrossRef]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34(11), 1702–1704 (2009).
[CrossRef] [PubMed]

2008

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

2007

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[CrossRef] [PubMed]

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

2003

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

2000

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

1997

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

1996

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
[CrossRef]

1982

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.) 29(7), 993–1009 (1982).
[CrossRef]

1968

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Abernathy, C. R.

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
[CrossRef]

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Bae, S. Y.

Bang, J.

B. J. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[CrossRef]

B. J. Kim, H. Jung, H. Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films 517(14), 3859–3861 (2009).
[CrossRef]

Barratt, C.

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Briggs, R. D.

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

Chang, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chang, E. Y.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

Chang, Y.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chen, H. L.

Chhajed, S.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Chiu, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chou, S. Y.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Chuang, S. Y.

Clayton, F.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

Constantine, C.

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

Devre, M. W.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

Edmondson, K. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Fetzer, C. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Hays, D.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

Hobson, W. S.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
[CrossRef]

Hong, J.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
[CrossRef]

Hsu, S.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.) 29(7), 993–1009 (1982).
[CrossRef]

Jang, S.

B. J. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[CrossRef]

Johnson, D.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

Jung, H.

B. J. Kim, H. Jung, H. Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films 517(14), 3859–3861 (2009).
[CrossRef]

Kanamori, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Karam, N. H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kim, B. J.

B. J. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[CrossRef]

B. J. Kim, H. Jung, H. Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films 517(14), 3859–3861 (2009).
[CrossRef]

Kim, D.

B. J. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[CrossRef]

Kim, H. Y.

B. J. Kim, H. Jung, H. Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films 517(14), 3859–3861 (2009).
[CrossRef]

Kim, J.

B. J. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[CrossRef]

B. J. Kim, H. Jung, H. Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films 517(14), 3859–3861 (2009).
[CrossRef]

Kim, J. K.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

King, R. R.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kinsey, G. S.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kuo, H.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Lambers, E. S.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
[CrossRef]

Law, D. C.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Lee, J. W.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
[CrossRef]

Lee, Y. T.

Li, Y.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

Lin, C. H.

Lin, Y. H.

McClellan, G. B.

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

Ohshita, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Pearton, S. J.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
[CrossRef]

Reelfs, B. H.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

Ren, F.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
[CrossRef]

Rieger, D. J.

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

Sahoo, K. C.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

Sai, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Sasserath, J. N.

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

Schubert, E. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Schubert, M. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Sherif, R. A.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Shul, R. J.

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

Song, Y. M.

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.) 29(7), 993–1009 (1982).
[CrossRef]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Yang, B.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

Yang, C.-S.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yoon, H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Yu, J. S.

Yu, J.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, P.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, Z.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Zhang, J.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

Adv. Mater.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Appl. Phys. Lett.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

IEEE Trans. Electron. Dev.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

J. Colloid Interface Sci.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

J. Electrochem. Soc.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, “Cl2-Based Dry Etching of GaAs, AlGaAs, and GaP,” J. Electrochem. Soc. 143(6), 2010–2014 (1996).
[CrossRef]

J. Vac. Sci. Technol. A

R. J. Shul, G. B. McClellan, R. D. Briggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine, and C. Barratt, “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A 15(3), 633–637 (1997).
[CrossRef]

J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, F. Clayton, D. Hays, and S. J. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18(4), 1220–1224 (2000).
[CrossRef]

J. Vac. Sci. Technol. B

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Nano Today

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

Opt. Acta (Lond.)

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.) 29(7), 993–1009 (1982).
[CrossRef]

Opt. Express

Opt. Lett.

Thin Solid Films

B. J. Kim, H. Jung, H. Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films 517(14), 3859–3861 (2009).
[CrossRef]

B. J. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the process used to fabricate GaAs SWSs. First, SiO2 nanospheres with a diameter of 350nm were spin-coated onto the GaAs substrate, followed by thinning of the SiO2 nanospheres by RIE etching. SEM images of spin-coated SiO2 nanospheres (b) before and (c) after the thinning process was conducted. The GaAs SWS was successfully fabricated by Cl-based RIE etching (d) as shown in the SEM image. SiO2 nanospheres were served as the etching mask.

Fig. 2
Fig. 2

SEM images of GaAs SWS fabricated using SiO2 nanospheres with a diameter of 310nm (a ~c) and 260nm (d ~f). GaAs SWSs were fabricated by RIE etching for 30 seconds (a, d), 60 seconds (b, e) and 90 seconds (c, f).

Fig. 3
Fig. 3

(a) Cross-sectional SEM image of GaAs SWS, which were fabricated using SiO2 nanospheres with a diameter of 310nm and RIE etching for 30 seconds. Cross-sectional SEM image of GaAs SWS fabricated using SiO2 nanospheres with a diameter of 260nm and RIE etching for (b) 30 seconds and (c) 60 seconds.

Fig. 4
Fig. 4

Reflectance spectra of GaAs substrates before and after fabrication of GaAs SWSs.

Fig. 5
Fig. 5

Images of three GaAs substrates with SWSs which were fabricated using SiO2 nanospheres.

Metrics