Abstract

The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to low-cost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers,” Jpn. J. Appl. Phys. 30(Part 2, No. 10A), 1708–1711 (1991).
    [CrossRef]
  2. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
    [CrossRef]
  3. S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62(19), 2390–2393 (1993).
    [CrossRef]
  4. S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
    [CrossRef]
  5. A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid State Lighting (John Wiley and Sons, New York, 2002).
  6. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  7. Photonics 21 Strategic Research Agenda, http://www.photonics21.org/AboutPhotonics21/SRA.php
  8. Multi-Year Program Plan, Solid State Lighting Research and Development, US Department of Energy, http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2009_web.pdf
  9. Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
    [CrossRef]
  10. W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 87–90 (2004).
    [CrossRef]
  11. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
    [CrossRef]
  12. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  13. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
    [CrossRef] [PubMed]
  14. T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
    [CrossRef]
  15. J. Bu and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid-State Electron. 45(1), 113–120 (2001).
    [CrossRef]
  16. M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
    [CrossRef]
  17. O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
    [CrossRef]
  18. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
  19. M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
    [CrossRef] [PubMed]
  20. S. M. Sze, Physics of Semiconductor Devices 2nd ed. (Wiley, New York, 1981).
  21. S. Habermehl, R. T. Apodaca, and R. J. Kaplar, “On dielectric breakdown in silicon-rich silicon nitride thin films,” Appl. Phys. Lett. 94(1), 012905–012908 (2009).
    [CrossRef]
  22. W. Chandra and L. K. Ang, “Space charge limited current in a gap combined of free space and solid,” Appl. Phys. Lett. 96(18), 183501 (2010).
    [CrossRef]
  23. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
    [CrossRef]
  24. R. Hattori and J. Shirafuji, “Longitudinal electron drift mobility of hydrogenated amorphous silicon/silicon nitride multilayer structures revelealed by time-of-flight measurements,” Appl. Phys. Lett. 54(12), 1118–1120 (1989).
    [CrossRef]
  25. J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
    [CrossRef]
  26. Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express 18(19), 20439–20444 (2010).
    [CrossRef] [PubMed]
  27. L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
    [CrossRef]
  28. K. A. Nasyrov, S. S. Shaimeev, and V. A. Gritsenko, “Trap-Assisted Tunneling Hole Injection in SiO2: Experiment and Theory,” J. Exp. Theor. Phys. 109(5), 786–793 (2009).
    [CrossRef]
  29. M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
    [CrossRef]
  30. CIE, (1995), Method of Measuring and Specifying Colour Rendering Properties of Light Sources Publication 13.3, Vienna: Commission Internationale de l'Eclairage, ISBN 978–3900734572.
  31. CIE, (1926), Commission internationale de l'Eclairage proceedings (Cambridge University Press, Cambridge) p. 1924.
  32. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [CrossRef]
  33. J. Carreras, J. M. Quintero, and C. E. Hunt, “Theoretical limits of natural light emulation,” Second CIE Expert Symposium on Appearance, Ghent, Belgium (2010).
  34. J. Carreras, J. Quintero, and C. E. Hunt, “Towards the Definition of New Visual Color Quality Representations,” Illuminating Engineering Society (IES) Meeting, Toronto, Canada, (2010).

2010 (3)

W. Chandra and L. K. Ang, “Space charge limited current in a gap combined of free space and solid,” Appl. Phys. Lett. 96(18), 183501 (2010).
[CrossRef]

Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express 18(19), 20439–20444 (2010).
[CrossRef] [PubMed]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

2009 (4)

K. A. Nasyrov, S. S. Shaimeev, and V. A. Gritsenko, “Trap-Assisted Tunneling Hole Injection in SiO2: Experiment and Theory,” J. Exp. Theor. Phys. 109(5), 786–793 (2009).
[CrossRef]

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

S. Habermehl, R. T. Apodaca, and R. J. Kaplar, “On dielectric breakdown in silicon-rich silicon nitride thin films,” Appl. Phys. Lett. 94(1), 012905–012908 (2009).
[CrossRef]

2008 (3)

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

2006 (2)

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
[CrossRef]

2005 (2)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

2004 (1)

W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 87–90 (2004).
[CrossRef]

2003 (1)

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

2001 (1)

J. Bu and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid-State Electron. 45(1), 113–120 (2001).
[CrossRef]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1997 (1)

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[CrossRef]

1996 (1)

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

1993 (1)

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62(19), 2390–2393 (1993).
[CrossRef]

1991 (1)

S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers,” Jpn. J. Appl. Phys. 30(Part 2, No. 10A), 1708–1711 (1991).
[CrossRef]

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

1989 (1)

R. Hattori and J. Shirafuji, “Longitudinal electron drift mobility of hydrogenated amorphous silicon/silicon nitride multilayer structures revelealed by time-of-flight measurements,” Appl. Phys. Lett. 54(12), 1118–1120 (1989).
[CrossRef]

1984 (1)

J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
[CrossRef]

Ang, L. K.

W. Chandra and L. K. Ang, “Space charge limited current in a gap combined of free space and solid,” Appl. Phys. Lett. 96(18), 183501 (2010).
[CrossRef]

Apodaca, R. T.

S. Habermehl, R. T. Apodaca, and R. J. Kaplar, “On dielectric breakdown in silicon-rich silicon nitride thin films,” Appl. Phys. Lett. 94(1), 012905–012908 (2009).
[CrossRef]

Atwater, H. A.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

Barreto, J.

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
[CrossRef]

Basu, S. N.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

Berencen, Y.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

Bour, D. P.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[CrossRef]

Bourianoff, G. I.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

Bu, J.

J. Bu and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid-State Electron. 45(1), 113–120 (2001).
[CrossRef]

Canham, L. T.

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

Carreras, J.

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

Cen, Z. H.

Chandra, W.

W. Chandra and L. K. Ang, “Space charge limited current in a gap combined of free space and solid,” Appl. Phys. Lett. 96(18), 183501 (2010).
[CrossRef]

Chen, T. P.

Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express 18(19), 20439–20444 (2010).
[CrossRef] [PubMed]

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

Dal Negro, L.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Ding, L.

Domínguez, C.

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
[CrossRef]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Galli, G.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

García, C.

M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
[CrossRef]

Garrido, B.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
[CrossRef]

Goh, W. P.

Gourbilleau, F.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

Gritsenko, V. A.

K. A. Nasyrov, S. S. Shaimeev, and V. A. Gritsenko, “Trap-Assisted Tunneling Hole Injection in SiO2: Experiment and Theory,” J. Exp. Theor. Phys. 109(5), 786–793 (2009).
[CrossRef]

Gui, D.

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

Habermehl, S.

S. Habermehl, R. T. Apodaca, and R. J. Kaplar, “On dielectric breakdown in silicon-rich silicon nitride thin films,” Appl. Phys. Lett. 94(1), 012905–012908 (2009).
[CrossRef]

Hamel, S.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

Hattori, R.

R. Hattori and J. Shirafuji, “Longitudinal electron drift mobility of hydrogenated amorphous silicon/silicon nitride multilayer structures revelealed by time-of-flight measurements,” Appl. Phys. Lett. 54(12), 1118–1120 (1989).
[CrossRef]

Hijazi, K.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

Ho, P. F.

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

Iwasa, N.

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

Jambois, O.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

Josep Carreras, J.

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

Kaplar, R. J.

S. Habermehl, R. T. Apodaca, and R. J. Kaplar, “On dielectric breakdown in silicon-rich silicon nitride thin films,” Appl. Phys. Lett. 94(1), 012905–012908 (2009).
[CrossRef]

Kenyon, A. J.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

Kim, H. S.

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Kimerling, L. C.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

Kiyoku, H.

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

Lebour, Y.

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

Li, R.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

Liu, K. Y.

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

Liu, Y.

Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express 18(19), 20439–20444 (2010).
[CrossRef] [PubMed]

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

Liu, Z.

López, M.

M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
[CrossRef]

Matsushita, T.

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Morales, A.

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

Mukai, T.

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62(19), 2390–2393 (1993).
[CrossRef]

S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers,” Jpn. J. Appl. Phys. 30(Part 2, No. 10A), 1708–1711 (1991).
[CrossRef]

Nakamura, S.

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62(19), 2390–2393 (1993).
[CrossRef]

S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers,” Jpn. J. Appl. Phys. 30(Part 2, No. 10A), 1708–1711 (1991).
[CrossRef]

Nasyrov, K. A.

K. A. Nasyrov, S. S. Shaimeev, and V. A. Gritsenko, “Trap-Assisted Tunneling Hole Injection in SiO2: Experiment and Theory,” J. Exp. Theor. Phys. 109(5), 786–793 (2009).
[CrossRef]

Navarro-Urrios, D.

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

Norton, D. P.

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Park, W. I.

W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 87–90 (2004).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pearton, S. J.

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

Perálvarez, M.

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
[CrossRef]

Ponce, F. A.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[CrossRef]

Powell, M. J.

J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Ren, F.

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

Rizk, R.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

Robertson, J.

J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
[CrossRef]

Rodríguez, J. A.

M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Senoh, M.

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62(19), 2390–2393 (1993).
[CrossRef]

S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers,” Jpn. J. Appl. Phys. 30(Part 2, No. 10A), 1708–1711 (1991).
[CrossRef]

Shaimeev, S. S.

K. A. Nasyrov, S. S. Shaimeev, and V. A. Gritsenko, “Trap-Assisted Tunneling Hole Injection in SiO2: Experiment and Theory,” J. Exp. Theor. Phys. 109(5), 786–793 (2009).
[CrossRef]

Shin-ichi, N.

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

Shirafuji, J.

R. Hattori and J. Shirafuji, “Longitudinal electron drift mobility of hydrogenated amorphous silicon/silicon nitride multilayer structures revelealed by time-of-flight measurements,” Appl. Phys. Lett. 54(12), 1118–1120 (1989).
[CrossRef]

Sugimoto, Y.

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

Tan, A. L. K.

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

Tan, O. K.

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

Tse, M. S.

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

Walters, R. J.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

Wang, Y.-L.

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

Warga, J.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

White, M. H.

J. Bu and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid-State Electron. 45(1), 113–120 (2001).
[CrossRef]

Williamson, A.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

Wojdak, M.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

Wong, J. I.

Yamada, T.

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

Yang, M.

Yi, G.-C.

W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 87–90 (2004).
[CrossRef]

Yi, J. H.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

Yu, S. F.

Adv. Mater. (Deerfield Beach Fla.) (1)

W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 87–90 (2004).
[CrossRef]

Appl. Phys. Lett. (11)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62(19), 2390–2393 (1993).
[CrossRef]

S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996).
[CrossRef]

M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006).
[CrossRef]

S. Habermehl, R. T. Apodaca, and R. J. Kaplar, “On dielectric breakdown in silicon-rich silicon nitride thin films,” Appl. Phys. Lett. 94(1), 012905–012908 (2009).
[CrossRef]

W. Chandra and L. K. Ang, “Space charge limited current in a gap combined of free space and solid,” Appl. Phys. Lett. 96(18), 183501 (2010).
[CrossRef]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

R. Hattori and J. Shirafuji, “Longitudinal electron drift mobility of hydrogenated amorphous silicon/silicon nitride multilayer structures revelealed by time-of-flight measurements,” Appl. Phys. Lett. 54(12), 1118–1120 (1989).
[CrossRef]

J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
[CrossRef]

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008).
[CrossRef]

J. Appl. Phys. (1)

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009).
[CrossRef]

J. Exp. Theor. Phys. (1)

K. A. Nasyrov, S. S. Shaimeev, and V. A. Gritsenko, “Trap-Assisted Tunneling Hole Injection in SiO2: Experiment and Theory,” J. Exp. Theor. Phys. 109(5), 786–793 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers,” Jpn. J. Appl. Phys. 30(Part 2, No. 10A), 1708–1711 (1991).
[CrossRef]

Nanotechnology (1)

M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

Nature (2)

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Opt. Eng. (1)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003).
[CrossRef]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Solid-State Electron. (1)

J. Bu and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid-State Electron. 45(1), 113–120 (2001).
[CrossRef]

Other (9)

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

Photonics 21 Strategic Research Agenda, http://www.photonics21.org/AboutPhotonics21/SRA.php

Multi-Year Program Plan, Solid State Lighting Research and Development, US Department of Energy, http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2009_web.pdf

A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid State Lighting (John Wiley and Sons, New York, 2002).

J. Carreras, J. M. Quintero, and C. E. Hunt, “Theoretical limits of natural light emulation,” Second CIE Expert Symposium on Appearance, Ghent, Belgium (2010).

J. Carreras, J. Quintero, and C. E. Hunt, “Towards the Definition of New Visual Color Quality Representations,” Illuminating Engineering Society (IES) Meeting, Toronto, Canada, (2010).

CIE, (1995), Method of Measuring and Specifying Colour Rendering Properties of Light Sources Publication 13.3, Vienna: Commission Internationale de l'Eclairage, ISBN 978–3900734572.

CIE, (1926), Commission internationale de l'Eclairage proceedings (Cambridge University Press, Cambridge) p. 1924.

S. M. Sze, Physics of Semiconductor Devices 2nd ed. (Wiley, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross-sectional view of the two Silicon Nitride MNOSLED structures under study. A1: Tunnel oxide (SiO2) + Si3N4 and A2: Tunnel oxide (SiO2) + Si3N4 + control oxide (SiO2). (b) Top view of a typical device. The semi-transparent gate electrode is the central rectangle with dimensions 10µm x 500 µm.

Fig. 2
Fig. 2

SRIM simulation profile for each structure.

Fig. 3
Fig. 3

(a) Current density (J) vs. gate voltage (V) plot for the MNOSLED. The inset shows the band diagram for struture A1 (b) Poole-Frenkel representation at low voltages. (c) Space charge-limited current representation at high voltages. (d) EL spectra at maximum voltage for both devices. The inset shows the EL emission of A1. This photograph was taken with a standard digital commercial camera. The white square on the right side represents the color extracted directly from the spectrum, which may be interpreted as a true-white correction.

Fig. 4
Fig. 4

Color shifts in the CIE 1931 diagram produced under a change in (a) excitation voltage (T = 10µs and DC = 50%), (b) period of the excitation signal (V = −25V and DC = 50%) and (c) duty cycle of the excitation signal (V = −25V and T = 10µs).

Fig. 5
Fig. 5

Dependence of Correlated Color Temperature (CCT), deviation from the blackbody locus (DUV), Luminous Efficacy of Radiation (LER) and Color Rendering Index (CRI) on Voltage (a) and on Duty Cycle (b).

Fig. 6
Fig. 6

(a) Musell region in the CIE 1931 diagram. (b) Color Rendering Map (CRM) of the spectrum excited through a waveform of −25V amplitude, 10µs period and 35% duty cycle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J E exp [ ( 1 / k B T ) e 3 E / π ε 0 ε r ] ,
J = 9 ε 0 ε r µ E 2 / 8 d ,

Metrics