Abstract

The optics of microcrystalline thin-film silicon solar cells with textured interfaces was investigated. The surface textures lead to scattering and diffraction of the incident light, which increases the effective thickness of the solar cell and results in a higher short circuit current. The aim of this study was to investigate the influence of the frontside and the backside texture on the short circuit current of microcrystalline thin-film silicon solar cells. The interaction of the front and back textures plays a major role in optimizing the overall short circuit current of the solar cell. In this study the front and back textures were approximated by line gratings to simplify the analysis of the wave propagation in the textured solar cell. The influence of the grating period and height on the quantum efficiency and the short circuit current was investigated and optimal grating dimensions were derived. The height of the front and back grating can be used to control the propagation of different diffraction orders in the solar cell. The short circuit current for shorter wavelengths (300-500 nm) is almost independent of the grating dimensions. For intermediate wavelengths (500 nm – 700 nm) the short circuit current is mainly determined by the front grating. For longer wavelength (700 nm to 1100 nm) the short circuit current is a function of the interaction of the front and back grating. An independent adjustment of the grating height of the front and the back grating allows for an increased short circuit current.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Brendel, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Wiley-VCH, 2003).
  2. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
    [CrossRef]
  3. T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovoltaics 17(3), 165–176 (2009).
    [CrossRef]
  4. T. Oyama, M. Kambe, N. Taneda, and K. Masumo, “Requirements for TCO Substrate in Si-based Thin Film Solar Cells -Toward Tandem,” in Proc. Mater. Res. Soc. Symp. 1101, KK02–01 (2008).
  5. H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 1087–1090 (2009).
    [CrossRef]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  7. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [CrossRef]
  8. J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
    [CrossRef]
  9. K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
    [CrossRef]
  10. W. Beyer, J. Hüpkes, and H. Stiebig, “Transparent conducting oxide films for thin film silicon photovoltaics,” Thin Solid Films 516(2-4), 147–154 (2007).
    [CrossRef]
  11. C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
    [CrossRef]
  12. C. Haase, U. Rau, and H. Stiebig, “Efficient light trapping scheme by periodic and quasi-random light trapping structures”, Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE, pp.1–5, 11–16 May (2008).
  13. K. R. Catchpole and M. A. Green, “J., “A conceptual model of light coupling by pillar diffraction gratings,” Appl. Phys. (Berl.) 101, 063105 (2007).
    [CrossRef]
  14. A. Ċampa, J. Krc, and M. Topic, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
    [CrossRef]
  15. S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16(13), 9332–9343 (2008).
    [CrossRef] [PubMed]
  16. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
    [CrossRef]
  17. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
    [CrossRef]
  18. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
    [CrossRef]
  19. H. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
    [CrossRef]
  20. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express 18(5Issue 5), 4260–4274 (2010).
    [CrossRef] [PubMed]
  21. S. C. Taflove, Hagness, Computational Electrodynamics, “The Finite-Difference Time-Domain Method”, 3rd Edition Artechhouse (2005).
  22. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982).
    [CrossRef]
  23. I. Vasilev, R. Dewan, D. Knipp, “Light Trapping Limits of mircocrystalline silicon Thin-Film Solar Cells,” (to be published) .
  24. D. O’Shea, T. Suleski, A. Kathman, and D. Prather, “Diffractive Optics – Design, Fabrication, and Test”, SPIE Press (2004)
    [PubMed]
  25. K. Jun, R. Carius, and H. Stiebig, “Optical Characteristics of Intrinsic Microcrystalline Silicon,” Phys. Rev. B 66(11), 115301 (2002).
    [CrossRef]

2010 (2)

2009 (5)

R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
[CrossRef]

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovoltaics 17(3), 165–176 (2009).
[CrossRef]

H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 1087–1090 (2009).
[CrossRef]

A. Ċampa, J. Krc, and M. Topic, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

2008 (2)

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16(13), 9332–9343 (2008).
[CrossRef] [PubMed]

2007 (4)

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[CrossRef]

K. R. Catchpole and M. A. Green, “J., “A conceptual model of light coupling by pillar diffraction gratings,” Appl. Phys. (Berl.) 101, 063105 (2007).
[CrossRef]

H. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

W. Beyer, J. Hüpkes, and H. Stiebig, “Transparent conducting oxide films for thin film silicon photovoltaics,” Thin Solid Films 516(2-4), 147–154 (2007).
[CrossRef]

2006 (1)

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
[CrossRef]

2004 (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

2002 (2)

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

K. Jun, R. Carius, and H. Stiebig, “Optical Characteristics of Intrinsic Microcrystalline Silicon,” Phys. Rev. B 66(11), 115301 (2002).
[CrossRef]

1999 (1)

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

1982 (1)

Andreani, L. C.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Ballif, C.

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovoltaics 17(3), 165–176 (2009).
[CrossRef]

Berginski, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[CrossRef]

Beyer, W.

W. Beyer, J. Hüpkes, and H. Stiebig, “Transparent conducting oxide films for thin film silicon photovoltaics,” Thin Solid Films 516(2-4), 147–154 (2007).
[CrossRef]

Campa, A.

A. Ċampa, J. Krc, and M. Topic, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

Carius, R.

K. Jun, R. Carius, and H. Stiebig, “Optical Characteristics of Intrinsic Microcrystalline Silicon,” Phys. Rev. B 66(11), 115301 (2002).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and M. A. Green, “J., “A conceptual model of light coupling by pillar diffraction gratings,” Appl. Phys. (Berl.) 101, 063105 (2007).
[CrossRef]

Dewan, R.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
[CrossRef]

Dubail, J.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Dubail, S.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Fahr, S.

Faÿ, S.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Feitknecht, L.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Fujiwara, H.

H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 1087–1090 (2009).
[CrossRef]

Gaylord, T. K.

Golay, S.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Green, M. A.

K. R. Catchpole and M. A. Green, “J., “A conceptual model of light coupling by pillar diffraction gratings,” Appl. Phys. (Berl.) 101, 063105 (2007).
[CrossRef]

Haase, C.

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
[CrossRef]

Haase, H.

H. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

Haug, F.-J.

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovoltaics 17(3), 165–176 (2009).
[CrossRef]

Hüpkes, J.

W. Beyer, J. Hüpkes, and H. Stiebig, “Transparent conducting oxide films for thin film silicon photovoltaics,” Thin Solid Films 516(2-4), 147–154 (2007).
[CrossRef]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[CrossRef]

Igari, S.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Jun, K.

K. Jun, R. Carius, and H. Stiebig, “Optical Characteristics of Intrinsic Microcrystalline Silicon,” Phys. Rev. B 66(11), 115301 (2002).
[CrossRef]

Kirchartz, T.

Knipp, D.

R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
[CrossRef]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

Kondo, M.

H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 1087–1090 (2009).
[CrossRef]

Krc, J.

A. Ċampa, J. Krc, and M. Topic, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

Kroll, U.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Lederer, F.

Lin, A.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Liscidini, M.

Marinkovic, M.

Meier, J.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Moharam, M. G.

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Nakajima, A.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Niquille, X.

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovoltaics 17(3), 165–176 (2009).
[CrossRef]

Noriega, R.

Okamoto, Y.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Phadke, S.

Phillips, J.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Rau, U.

Rech, B.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[CrossRef]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Rockstuhl, C.

Sai, H.

H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 1087–1090 (2009).
[CrossRef]

Salleo, A.

Schöpe, G.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[CrossRef]

Schulte, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[CrossRef]

Shah, A.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Söderström, T.

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovoltaics 17(3), 165–176 (2009).
[CrossRef]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Stiebig, H.

W. Beyer, J. Hüpkes, and H. Stiebig, “Transparent conducting oxide films for thin film silicon photovoltaics,” Thin Solid Films 516(2-4), 147–154 (2007).
[CrossRef]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[CrossRef]

H. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
[CrossRef]

K. Jun, R. Carius, and H. Stiebig, “Optical Characteristics of Intrinsic Microcrystalline Silicon,” Phys. Rev. B 66(11), 115301 (2002).
[CrossRef]

Tawada, Y.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Topic, M.

A. Ċampa, J. Krc, and M. Topic, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

Ulbrich, C.

Vallat-Sauvain, E.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Wuttig, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[CrossRef]

Yamamoto, K.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Yoshimi, M.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Zanotto, S.

Appl. Phys. (Berl.) (1)

K. R. Catchpole and M. A. Green, “J., “A conceptual model of light coupling by pillar diffraction gratings,” Appl. Phys. (Berl.) 101, 063105 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

H. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

J. Appl. Phys. (3)

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[CrossRef]

A. Ċampa, J. Krc, and M. Topic, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

K. Jun, R. Carius, and H. Stiebig, “Optical Characteristics of Intrinsic Microcrystalline Silicon,” Phys. Rev. B 66(11), 115301 (2002).
[CrossRef]

Prog. Photovoltaics (2)

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovoltaics 17(3), 165–176 (2009).
[CrossRef]

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
[CrossRef]

Sol. Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 1087–1090 (2009).
[CrossRef]

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Thin Solid Films (1)

W. Beyer, J. Hüpkes, and H. Stiebig, “Transparent conducting oxide films for thin film silicon photovoltaics,” Thin Solid Films 516(2-4), 147–154 (2007).
[CrossRef]

Other (6)

R. Brendel, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Wiley-VCH, 2003).

T. Oyama, M. Kambe, N. Taneda, and K. Masumo, “Requirements for TCO Substrate in Si-based Thin Film Solar Cells -Toward Tandem,” in Proc. Mater. Res. Soc. Symp. 1101, KK02–01 (2008).

C. Haase, U. Rau, and H. Stiebig, “Efficient light trapping scheme by periodic and quasi-random light trapping structures”, Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE, pp.1–5, 11–16 May (2008).

S. C. Taflove, Hagness, Computational Electrodynamics, “The Finite-Difference Time-Domain Method”, 3rd Edition Artechhouse (2005).

I. Vasilev, R. Dewan, D. Knipp, “Light Trapping Limits of mircocrystalline silicon Thin-Film Solar Cells,” (to be published) .

D. O’Shea, T. Suleski, A. Kathman, and D. Prather, “Diffractive Optics – Design, Fabrication, and Test”, SPIE Press (2004)
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic cross section of a microcrystalline thin-film silicon solar cell on a (a) smooth and (b) nanotextured substrate. The surface texture is approximated by a (c) triangular grating and (d) line grating.

Fig. 2
Fig. 2

Short circuit current of a microcrystalline silicon thin-film solar cell with integrated triangular grating (a) and line grating (b) as a function of grating period for different grating heights. The solar cell has a thickness of 1 μm.

Fig. 3
Fig. 3

Diffraction pattern for structures with grating heights of 180 nm (a) and 360 nm (b).

Fig. 4
Fig. 4

Total specular transmission (a) and diffused transmission (b) of front grating. Total specular reflection (c) and diffuse reflection (d) of back grating. The solar cell has a period of 700 nm.

Fig. 5
Fig. 5

Power loss profile for an infinitely thick absorber layer prepared on a line grating (a and c) (acts as transmission grating) and a back contact (b and d) with line grating pattern. The grating height is 180 nm for (a) and (b) and 360 nm for (c) and (d).

Fig. 7
Fig. 7

Power loss profile for a solar cell with a front and back grating for grating height of 180 nm (a) and 360 nm (b).

Fig. 8
Fig. 8

Quantum efficiency of structures with double grating heights of 180 nm, 340 nm and 360 nm.

Fig. 6
Fig. 6

Short circuit current of a microcrystalline silicon thin-film solar cell with an integrated front (a) and back (b) grating as a function of grating period for different grating heights.

Tables (1)

Tables Icon

Table 1 Phase difference and short circuit current data for the three structures under investigation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P n sin ( θ m ) = m λ ,
ϕ F = 2 π λ | n S i n Z n O | h g ,
ϕ B = 4 π λ n S i h g ,
ϕ B 4 π λ n S i P + n Z n O d Z n O P + d Z n O h g ,

Metrics