Abstract

We present the first observation of resonance energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding. Steady-state and time-resolved photoluminescence measurements provide conclusive evidence of resonance energy transfer and obtain an optimum transfer efficiency of ~72%. A set of rate equations is successfully used to model the kinetics of resonance energy transfer.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Förster, “Intermolecular energy transference and fluorescence,” Annalen der Physik 2, 55–75 (1948).
    [CrossRef]
  2. J. R. Lakowicz, Principle of Fluorescence Spectroscopy (Kluwer Academic, 1999).
  3. G. P. Gorbenko and Y. A. Domanov, “Energy transfer method in membrane studies: some theoretical and practical aspects,” J. Biochem. Biophys. Methods 52(1), 45–58 (2002).
    [CrossRef] [PubMed]
  4. G. D. Scholes, “Long-range resonance energy transfer in molecular systems,” Annu. Rev. Phys. Chem. 54(1), 57–87 (2003).
    [CrossRef]
  5. D. M. Willard, L. L. Carillo, J. Jung, and A. Van Orden, “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay,” Nano Lett. 1(9), 469–474 (2001).
    [CrossRef]
  6. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
    [CrossRef] [PubMed]
  7. R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
    [CrossRef] [PubMed]
  8. D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Förster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
    [CrossRef]
  9. V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, “New concept for organic LEDs: non-radiative electron energy transfer from semiconductor quantum well to organic overlayer,” Synth. Met. 116(1-3), 349–351 (2001).
    [CrossRef]
  10. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004).
    [CrossRef] [PubMed]
  11. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
    [CrossRef]
  12. G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
    [CrossRef]
  13. C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
    [CrossRef]
  14. G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
    [CrossRef] [PubMed]
  15. C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
    [CrossRef] [PubMed]
  16. M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek., “Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes,” J. Appl. Phys. 86(2), 1114–1118 (1999).
    [CrossRef]
  17. G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).
  18. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. 77(19), 193402 (2008).
    [CrossRef]
  19. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
    [CrossRef] [PubMed]
  20. A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
    [CrossRef]

2009 (3)

G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
[CrossRef] [PubMed]

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

2008 (3)

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. 77(19), 193402 (2008).
[CrossRef]

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

2007 (2)

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

2006 (1)

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

2004 (2)

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004).
[CrossRef] [PubMed]

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

2003 (1)

G. D. Scholes, “Long-range resonance energy transfer in molecular systems,” Annu. Rev. Phys. Chem. 54(1), 57–87 (2003).
[CrossRef]

2002 (1)

G. P. Gorbenko and Y. A. Domanov, “Energy transfer method in membrane studies: some theoretical and practical aspects,” J. Biochem. Biophys. Methods 52(1), 45–58 (2002).
[CrossRef] [PubMed]

2001 (2)

D. M. Willard, L. L. Carillo, J. Jung, and A. Van Orden, “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay,” Nano Lett. 1(9), 469–474 (2001).
[CrossRef]

V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, “New concept for organic LEDs: non-radiative electron energy transfer from semiconductor quantum well to organic overlayer,” Synth. Met. 116(1-3), 349–351 (2001).
[CrossRef]

1999 (2)

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Förster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek., “Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes,” J. Appl. Phys. 86(2), 1114–1118 (1999).
[CrossRef]

1996 (1)

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

1948 (1)

T. Förster, “Intermolecular energy transference and fluorescence,” Annalen der Physik 2, 55–75 (1948).
[CrossRef]

Achermann, M.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Agranovich, V. M.

V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, “New concept for organic LEDs: non-radiative electron energy transfer from semiconductor quantum well to organic overlayer,” Synth. Met. 116(1-3), 349–351 (2001).
[CrossRef]

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Förster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

Alves, E.

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Barradas, N.

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Basko, D.

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Förster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

Basko, D. M.

V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, “New concept for organic LEDs: non-radiative electron energy transfer from semiconductor quantum well to organic overlayer,” Synth. Met. 116(1-3), 349–351 (2001).
[CrossRef]

Bassani, F.

V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, “New concept for organic LEDs: non-radiative electron energy transfer from semiconductor quantum well to organic overlayer,” Synth. Met. 116(1-3), 349–351 (2001).
[CrossRef]

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Förster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

Bawendi, M. G.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Belton, C. R.

G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
[CrossRef] [PubMed]

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

Bose, R.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Bradley, D.

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Bradley, D. D. C.

G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
[CrossRef] [PubMed]

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Carillo, L. L.

D. M. Willard, L. L. Carillo, J. Jung, and A. Van Orden, “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay,” Nano Lett. 1(9), 469–474 (2001).
[CrossRef]

Chang, W. H.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Chanyawadee, S.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. 77(19), 193402 (2008).
[CrossRef]

Chen, C. J.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Chung, H. P.

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Clapp, A. R.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Dawson, M.

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Dawson, M. D.

G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
[CrossRef] [PubMed]

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Domanov, Y. A.

G. P. Gorbenko and Y. A. Domanov, “Energy transfer method in membrane studies: some theoretical and practical aspects,” J. Biochem. Biophys. Methods 52(1), 45–58 (2002).
[CrossRef] [PubMed]

Feldmann, J.

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Ferguson, I. T.

M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek., “Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes,” J. Appl. Phys. 86(2), 1114–1118 (1999).
[CrossRef]

Fisher, B. R.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Förster, T.

T. Förster, “Intermolecular energy transference and fluorescence,” Annalen der Physik 2, 55–75 (1948).
[CrossRef]

Gao, J.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Gorbenko, G. P.

G. P. Gorbenko and Y. A. Domanov, “Energy transfer method in membrane studies: some theoretical and practical aspects,” J. Biochem. Biophys. Methods 52(1), 45–58 (2002).
[CrossRef] [PubMed]

Griffin, C.

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

Gu, E.

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

Guilhabert, B.

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

Harley, R. T.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. 77(19), 193402 (2008).
[CrossRef]

Heliotis, G.

G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
[CrossRef] [PubMed]

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Henini, M.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. 77(19), 193402 (2008).
[CrossRef]

Huang, S. H.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

Itskos, G.

G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
[CrossRef] [PubMed]

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Jung, J.

D. M. Willard, L. L. Carillo, J. Jung, and A. Van Orden, “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay,” Nano Lett. 1(9), 469–474 (2001).
[CrossRef]

Kagan, C. R.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Karlicek, R. F.

M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek., “Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes,” J. Appl. Phys. 86(2), 1114–1118 (1999).
[CrossRef]

Klimov, V. I.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Koleske, D. D.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Kos, S.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004).
[CrossRef] [PubMed]

La Rocca, G. C.

V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, “New concept for organic LEDs: non-radiative electron energy transfer from semiconductor quantum well to organic overlayer,” Synth. Met. 116(1-3), 349–351 (2001).
[CrossRef]

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Förster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

Lagoudakis, P.

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Lagoudakis, P. G.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. 77(19), 193402 (2008).
[CrossRef]

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

Lee, C. H.

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

Li, J. K.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

Lidzey, D. G.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. 77(19), 193402 (2008).
[CrossRef]

Lin, C. A. J.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Lin, C. C.

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Lodahl, P.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Long, F. H.

M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek., “Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes,” J. Appl. Phys. 86(2), 1114–1118 (1999).
[CrossRef]

Lupton, J.

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Mackintosh, A. R.

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

Mattoussi, H.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Mauro, J. M.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

McMillan, J. F.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Medintz, I. L.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Murray, C. B.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Murray, R.

G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
[CrossRef] [PubMed]

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Nikolaev, I.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Nirmal, M.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Parak, W. J.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

Pereira, S.

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Pethrick, R. A.

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

Petruska, M. A.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Pophristic, M.

M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek., “Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes,” J. Appl. Phys. 86(2), 1114–1118 (1999).
[CrossRef]

Rickey, K. M.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Scholes, G. D.

G. D. Scholes, “Long-range resonance energy transfer in molecular systems,” Annu. Rev. Phys. Chem. 54(1), 57–87 (2003).
[CrossRef]

Shen, J. L.

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

Shu, G. W.

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Smith, D. L.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Sperling, R. A.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

Stavrinou, P. N.

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

Talapin, D. V.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Tang, J.

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Tran, C.

M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek., “Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes,” J. Appl. Phys. 86(2), 1114–1118 (1999).
[CrossRef]

van Driel, A.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Van Orden, A.

D. M. Willard, L. L. Carillo, J. Jung, and A. Van Orden, “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay,” Nano Lett. 1(9), 469–474 (2001).
[CrossRef]

Vanmaekelbergh, D.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Vergeer, P.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Vos, W.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Wang, H. H.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Wang, W. H.

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Watson, I.

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Watson, I. M.

G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
[CrossRef] [PubMed]

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Willard, D. M.

D. M. Willard, L. L. Carillo, J. Jung, and A. Van Orden, “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay,” Nano Lett. 1(9), 469–474 (2001).
[CrossRef]

Wong, C. W.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Yang, T. Y.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

Yeh, H. I.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Yuan, C. T.

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Zanella, M.

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006).
[CrossRef]

Annalen der Physik (1)

T. Förster, “Intermolecular energy transference and fluorescence,” Annalen der Physik 2, 55–75 (1948).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

G. D. Scholes, “Long-range resonance energy transfer in molecular systems,” Annu. Rev. Phys. Chem. 54(1), 57–87 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).

Eur. Phys. J. B (1)

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Förster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek., “Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes,” J. Appl. Phys. 86(2), 1114–1118 (1999).
[CrossRef]

J. Biochem. Biophys. Methods (1)

G. P. Gorbenko and Y. A. Domanov, “Energy transfer method in membrane studies: some theoretical and practical aspects,” J. Biochem. Biophys. Methods 52(1), 45–58 (2002).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008).
[CrossRef]

Nano Lett. (2)

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

D. M. Willard, L. L. Carillo, J. Jung, and A. Van Orden, “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay,” Nano Lett. 1(9), 469–474 (2001).
[CrossRef]

Nanotechnology (1)

G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009).
[CrossRef] [PubMed]

Nature (1)

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Phys. Rev. (1)

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. 77(19), 193402 (2008).
[CrossRef]

Phys. Rev. B (2)

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Synth. Met. (1)

V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, “New concept for organic LEDs: non-radiative electron energy transfer from semiconductor quantum well to organic overlayer,” Synth. Met. 116(1-3), 349–351 (2001).
[CrossRef]

Other (1)

J. R. Lakowicz, Principle of Fluorescence Spectroscopy (Kluwer Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the resonance energy transfer from the InGaN quantum well to Au NCs via optical waveguiding.

Fig. 2
Fig. 2

(a) PL spectrum of Au NCs (b) PL excitation spectrum of Au NCs (c) PL spectrum of the InGaN quantum well.

Fig. 3
Fig. 3

PL spectra of the InGaN quantum well in the presence (the solid line) and absence (the dashed line) of Au NCs. The inset displays the photograph of the investigated sample under laser excitation (the spot marked by an arrow), showing the red emission of Au NCs (the region marked by the open ellipse).

Fig. 4
Fig. 4

(a) PL decay profile of the InGaN quantum well in the absence (open circles) and present (open squares) of Au NCs. The dashed line (solid line) is the fitted curve using Eq. (1) (Eq. (5)). (b) PL decay profile of Au NCs in the absence (open circles) and present (open squares) of InGaN quantum wells. The dashed line (solid line) is the fitted curve using Eq. (2) (Eq. (6)).

Fig. 5
Fig. 5

The dependence of the PL intensity in InGaN quantum wells on excitation density. The nearly linear dependence reveals that recombination is dominated by excitons.

Tables (1)

Tables Icon

Table 1 The parameters used in the fits according to Eqs. (5) and (6)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n D ( t ) = n D ( 0 ) e ( k D t ) β 1 ,
n A ( t ) = n A ( 0 ) e ( k A t ) β 2 ,
d n D A ( t ) d t = k D n D A ( t ) k E T n D A ( t ) ,
d n A D ( t ) d t = k N C n A D ( t ) + k E T n A D ( t ) ,
n D A ( t ) = n D A ( 0 ) e ( k D t ) β 1 × e ( k E T t ) 1 / 2 ,
n A D ( t ) = A e ( k A t ) β 2 B e ( k D t ) β 1 × e ( k E T t ) 1 / 2 ,
E = 1 I D A I D ,
< τ > = 1 k β Γ ( 1 β ) ,
E = k E T k E T + k D .

Metrics