Abstract

We report the antireflective property of thin film amorphous silicon (a-Si) solar cell structures based on graded refractive index structure together with theoretical analysis. Optimizations of the index profile are performed using the rigorous coupled-wave analysis method. The graded refractive index structure fabricated by oblique angle deposition suppresses optical reflection over a wide range of wavelength and incident angle, compared to the conventional structure. The average reflectance of thin film a-Si solar cell structure with the graded refractive index structure is suppressed by 54% at normal incidence due to the effective refractive index matching between ITO and a-Si, indicating a reasonable agreement with calculated results.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
    [CrossRef]
  2. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]
  3. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004).
    [CrossRef]
  4. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
    [CrossRef]
  5. Lord Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. London Math. Soc. s1–11(1), 51–56 (1879).
  6. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef]
  7. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
    [CrossRef] [PubMed]
  8. J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Opt. Express 17(6), 4646–4651 (2009).
    [CrossRef] [PubMed]
  9. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  10. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
    [CrossRef]
  11. W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
    [CrossRef]
  12. X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
    [CrossRef]
  13. S. J. Jang, Y. M. Song, J. S. Yu, and Y. T. Lee, “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech. (to be published), doi:.
  14. M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
    [CrossRef] [PubMed]
  15. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
  16. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
    [CrossRef] [PubMed]
  17. P. Doshi, G. E. Jellison, and A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Appl. Opt. 36(30), 7826–7837 (1997).
    [CrossRef]
  18. E. Spiller, I. Hailer, R. Feder, J. E. E. Baglin, and W. N. Hammer, “Graded-index AR surfaces produced by ion implantation on plastic materials,” Appl. Opt. 19(17), 3022–3026 (1980).
    [CrossRef] [PubMed]
  19. P. Yeh and S. Sari, “Optical properties of stratified media with exponentially graded refractive index,” Appl. Opt. 22(24), 4142–4145 (1983).
    [CrossRef] [PubMed]
  20. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [CrossRef] [PubMed]
  21. M. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007).
    [CrossRef] [PubMed]
  22. D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93(10), 101914 (2008).
    [CrossRef]
  23. R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226(2), 196–201 (1993).
    [CrossRef]
  24. R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, and R. J. C. van Zolingen, “The AM 1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
    [CrossRef]

2010

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
[CrossRef] [PubMed]

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, and R. J. C. van Zolingen, “The AM 1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

2009

2008

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
[CrossRef] [PubMed]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93(10), 101914 (2008).
[CrossRef]

2007

M. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007).
[CrossRef] [PubMed]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

2004

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004).
[CrossRef]

2002

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

1997

1993

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226(2), 196–201 (1993).
[CrossRef]

1983

1980

1976

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
[CrossRef]

1879

Lord Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. London Math. Soc. s1–11(1), 51–56 (1879).

Baglin, J. E. E.

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Brett, M. J.

M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
[CrossRef] [PubMed]

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226(2), 196–201 (1993).
[CrossRef]

Carlson, D. E.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
[CrossRef]

Chang, A. S. P.

Chang, H. C.

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

M. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007).
[CrossRef] [PubMed]

Chhajed, S.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Chopra, K. L.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004).
[CrossRef]

Chyan, J. Y.

Doshi, P.

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Dutta, V.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004).
[CrossRef]

Feder, R.

Gao, J.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Goddard, L. L.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

Goud, J. M.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, and R. J. C. van Zolingen, “The AM 1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Green, M. A.

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

Hailer, I.

Hammer, W. N.

Han, Y.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Hawkeye, M. M.

M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
[CrossRef] [PubMed]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Hsu, W. C.

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Jang, S. J.

S. J. Jang, Y. M. Song, J. S. Yu, and Y. T. Lee, “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech. (to be published), doi:.

Jellison, G. E.

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Kang, Y. M.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

Kim, J. K.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93(10), 101914 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Lee, Y. T.

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
[CrossRef] [PubMed]

S. J. Jang, Y. M. Song, J. S. Yu, and Y. T. Lee, “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech. (to be published), doi:.

Li, X.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Lin, S. Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

M. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007).
[CrossRef] [PubMed]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Mont, F. W.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93(10), 101914 (2008).
[CrossRef]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Paulson, P. D.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004).
[CrossRef]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Poxson, D. J.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93(10), 101914 (2008).
[CrossRef]

Qiu, W.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

Rohatgi, A.

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Santbergen, R.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, and R. J. C. van Zolingen, “The AM 1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Sari, S.

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Schubert, E. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93(10), 101914 (2008).
[CrossRef]

M. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007).
[CrossRef] [PubMed]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Schubert, M. F.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93(10), 101914 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Smy, T.

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226(2), 196–201 (1993).
[CrossRef]

Song, Y. M.

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
[CrossRef] [PubMed]

S. J. Jang, Y. M. Song, J. S. Yu, and Y. T. Lee, “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech. (to be published), doi:.

Southwell, W. H.

Spiller, E.

Tait, R. N.

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226(2), 196–201 (1993).
[CrossRef]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

van Roosmalen, J. A. M.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, and R. J. C. van Zolingen, “The AM 1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

van Zolingen, R. J. C.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, and R. J. C. van Zolingen, “The AM 1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Wronski, C. R.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
[CrossRef]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

M. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007).
[CrossRef] [PubMed]

Xue, L.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Yeh, J. A.

Yeh, P.

Yu, J. S.

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
[CrossRef] [PubMed]

S. J. Jang, Y. M. Song, J. S. Yu, and Y. T. Lee, “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech. (to be published), doi:.

Zeman, M.

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, and R. J. C. van Zolingen, “The AM 1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Adv. Funct. Mater.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93(10), 101914 (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
[CrossRef]

Nano Lett.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Nat. Photonics

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Opt. Express

Opt. Lett.

Proc. London Math. Soc.

Lord Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. London Math. Soc. s1–11(1), 51–56 (1879).

Prog. Photovolt. Res. Appl.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

Science

M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, and R. J. C. van Zolingen, “The AM 1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 715–723 (2010).
[CrossRef]

Surf. Coat. Tech.

S. J. Jang, Y. M. Song, J. S. Yu, and Y. T. Lee, “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech. (to be published), doi:.

Thin Solid Films

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226(2), 196–201 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagrams of typical superstrate type thin film solar cell structure (Sample A) and proposed structure with GRIS (Sample B). The magnified images in red squares express the light propagation through the interface between ITO and a-Si layer with and without the GRIS. (b) Electric field distribution in the structures with and without the GRIS.

Fig. 2
Fig. 2

Calculated reflectance of (a) Linear, (b) Quintic, (c) Gaussian, and (d) Cubic index profiles as function of wavelength in the range of 400-800 nm for incident angles of 20-70°. (e) Calculated average reflectance of various index profiles of the GRIS and of the structure without the GRIS as a function of incident angle of light.

Fig. 3
Fig. 3

(a) Calculated reflectance of sample A (without the GRIS) and B (with the GRIS) at normal incidence as a function of wavelength. (b) Effective refractive index profile of the Cubic index profile as a function of thickness. The effective refractive index is chosen at the wavelength of 600 nm.

Fig. 4
Fig. 4

SEM image of the structure (a) with and (b) without the GRIS. The inset of (a) is a TEM image of the GRIS. The magnified TEM image shows the distinct nanocolumnar structure of GRIS.

Fig. 5
Fig. 5

Tangent rule and Cosine rule between the incident angle of e-beam flux and the inclined angle of nanocolumnar structure. The star marks indicate the experimental points of each layer of the GRIS.

Fig. 6
Fig. 6

Measured reflectance of sample A (without the GRIS) and B (with the GRIS) at normal incidence as a function of wavelength.

Fig. 7
Fig. 7

Calculated reflectance of the structures (a) without and (b) with the GRIS as function of wavelength and incident angle. Measured reflectance of the structures (c) without and (d) with the GRIS as function of wavelength and incident angle.

Fig. 8
Fig. 8

Measured average reflectance of sample A and B as a function of incident angle for unpolarized light.

Tables (1)

Tables Icon

Table 1 Thickness of 5 layers and their measured refractive indices for different graded index profiles

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( x ) = n I T O + ( n a - S i n I T O ) x ,
n ( x ) = n I T O + ( n a - S i n I T O ) ( 10 x 3 15 x 4 + 6 x 5 ) ,
n ( x ) = n I T O + ( n a - S i n I T O ) e x p [ - ( x 1 0.4 ) 2 ] ,
n ( x ) = n I T O + ( n a - S i n I T O ) ( 0.3 x 3 + 2.4 x 2 6.4 x + 6.2 ) ,

Metrics