Abstract

Silicon films with light-trapping structures are fabricated based on Bi2O3 nano-islands, which are obtained by annealing Bi nano-islands in the air at 400°C. The topography exhibits the maximum altitude of over 600nm and the root-mean-square roughness of 150nm, with the lateral size of single island of about 1μm. Highly crystallized sputtered silicon, realized by Cu-induced crystallization, is used to be a light-absorbing layer. Reflectivity of the samples with different thickness of silicon has been studied to reveal the light-trapping efficiency. The average reflectivity under AM1.5 illumination spectrum is 12% when silicon is 480nm thick and the reflectivity for the long wavelength region between 800nm and 1100nm is less than 10% when the silicon is 1.2μm thick. This is a promising low-cost structure for crystallized silicon thin-film solar cells with high efficiency.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maycock, “PV review: World Solar PV market continues explosive growth,” Refocus 6(5), 18–22 (2005).
    [CrossRef]
  2. M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 135–171 (2001).
    [CrossRef]
  3. R. W. Birkmire, “Compound polycrystalline solar cells: Recent progress and Y2 K perspective,” Sol. Energy Mater. Sol. Cells 65(1-4), 17–28 (2001).
    [CrossRef]
  4. T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347 (2009).
    [CrossRef]
  5. B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006).
    [CrossRef]
  6. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
    [CrossRef]
  7. D. Bonnet, “Manufacturing of CSS CdTe solar cells,” Thin Solid Films 361–362, 547 (2000).
    [CrossRef]
  8. F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy 77(6), 685–695 (2004).
    [CrossRef]
  9. F. Svelto, C. Flores, A. Caon, R. Contini, and E. Rossi, “The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes,” Sol. Energy Mater. Sol. Cells 35, 99–104 (1994).
    [CrossRef]
  10. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292 (1977).
    [CrossRef]
  11. J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett. 70(25), 3434 (1997).
    [CrossRef]
  12. M. Miyao, I. Tsunoda, Y. Sadoh, and A. Kenjo, “Ion-beam stimulated solid-phase crystallization of amorphous Si on SiO2,” Thin Solid Films 383(1-2), 104–106 (2001).
    [CrossRef]
  13. Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1, No. 12), 2698–2704 (1990).
    [CrossRef]
  14. Wenyan Zhang, Dejie Li, and Jian Wang. Phys, “Cu-induced poly-Si/SiO2/a-Si multilayer film with high reflectivity across the whole visible band,” Stat. Solidi RRL 3,82 (2009).
    [CrossRef]
  15. G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69(9), 6394 (1991).
    [CrossRef]
  16. S. W. Russell, J. Li, and J. W. Mayer, “In situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix,” J. Appl. Phys. 70(9), 5153 (1991).
    [CrossRef]
  17. Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1 No. 4), 729–738 (1990).
    [CrossRef]
  18. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
    [CrossRef]
  19. J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, “Reflectivity of porous-pyramids structured silicon surface,” Appl. Surf. Sci. 257(2), 472–475 (2010).
    [CrossRef]
  20. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [CrossRef]
  21. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
    [CrossRef]
  22. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008).
    [CrossRef] [PubMed]
  23. N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldingera, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
    [CrossRef]
  24. Ch. Ossadnik, S. Veprek, and I. Gregora, “Applicability of Raman scattering for the characterization of nanocrystalline silicon,” Thin Solid Films 337(1-2), 148–151 (1999).
    [CrossRef]
  25. D. Das and M. Jana, “Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme,” Sol. Energy Mater. Sol. Cells 81(2), 169–181 (2004).
    [CrossRef]

2010 (1)

J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, “Reflectivity of porous-pyramids structured silicon surface,” Appl. Surf. Sci. 257(2), 472–475 (2010).
[CrossRef]

2009 (2)

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347 (2009).
[CrossRef]

Wenyan Zhang, Dejie Li, and Jian Wang. Phys, “Cu-induced poly-Si/SiO2/a-Si multilayer film with high reflectivity across the whole visible band,” Stat. Solidi RRL 3,82 (2009).
[CrossRef]

2008 (2)

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[CrossRef]

Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008).
[CrossRef] [PubMed]

2007 (1)

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

2006 (1)

B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006).
[CrossRef]

2005 (1)

P. D. Maycock, “PV review: World Solar PV market continues explosive growth,” Refocus 6(5), 18–22 (2005).
[CrossRef]

2004 (4)

F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy 77(6), 685–695 (2004).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

D. Das and M. Jana, “Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme,” Sol. Energy Mater. Sol. Cells 81(2), 169–181 (2004).
[CrossRef]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

2001 (3)

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 135–171 (2001).
[CrossRef]

R. W. Birkmire, “Compound polycrystalline solar cells: Recent progress and Y2 K perspective,” Sol. Energy Mater. Sol. Cells 65(1-4), 17–28 (2001).
[CrossRef]

M. Miyao, I. Tsunoda, Y. Sadoh, and A. Kenjo, “Ion-beam stimulated solid-phase crystallization of amorphous Si on SiO2,” Thin Solid Films 383(1-2), 104–106 (2001).
[CrossRef]

2000 (1)

D. Bonnet, “Manufacturing of CSS CdTe solar cells,” Thin Solid Films 361–362, 547 (2000).
[CrossRef]

1999 (2)

N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldingera, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[CrossRef]

Ch. Ossadnik, S. Veprek, and I. Gregora, “Applicability of Raman scattering for the characterization of nanocrystalline silicon,” Thin Solid Films 337(1-2), 148–151 (1999).
[CrossRef]

1997 (1)

J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett. 70(25), 3434 (1997).
[CrossRef]

1994 (1)

F. Svelto, C. Flores, A. Caon, R. Contini, and E. Rossi, “The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes,” Sol. Energy Mater. Sol. Cells 35, 99–104 (1994).
[CrossRef]

1991 (2)

G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69(9), 6394 (1991).
[CrossRef]

S. W. Russell, J. Li, and J. W. Mayer, “In situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix,” J. Appl. Phys. 70(9), 5153 (1991).
[CrossRef]

1990 (2)

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1 No. 4), 729–738 (1990).
[CrossRef]

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1, No. 12), 2698–2704 (1990).
[CrossRef]

1977 (1)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292 (1977).
[CrossRef]

Aldingera, F.

N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldingera, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[CrossRef]

Ameri, T.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347 (2009).
[CrossRef]

Arai, T.

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1, No. 12), 2698–2704 (1990).
[CrossRef]

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1 No. 4), 729–738 (1990).
[CrossRef]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

Birkmire, R. W.

R. W. Birkmire, “Compound polycrystalline solar cells: Recent progress and Y2 K perspective,” Sol. Energy Mater. Sol. Cells 65(1-4), 17–28 (2001).
[CrossRef]

Blakers, A. W.

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 135–171 (2001).
[CrossRef]

Bonnet, D.

D. Bonnet, “Manufacturing of CSS CdTe solar cells,” Thin Solid Films 361–362, 547 (2000).
[CrossRef]

Brabec, C. J.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347 (2009).
[CrossRef]

Caon, A.

F. Svelto, C. Flores, A. Caon, R. Contini, and E. Rossi, “The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes,” Sol. Energy Mater. Sol. Cells 35, 99–104 (1994).
[CrossRef]

Catchpole, K. R.

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 135–171 (2001).
[CrossRef]

Chang, J.-Y.

Contini, R.

F. Svelto, C. Flores, A. Caon, R. Contini, and E. Rossi, “The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes,” Sol. Energy Mater. Sol. Cells 35, 99–104 (1994).
[CrossRef]

Crowder, M. A.

J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett. 70(25), 3434 (1997).
[CrossRef]

Das, D.

D. Das and M. Jana, “Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme,” Sol. Energy Mater. Sol. Cells 81(2), 169–181 (2004).
[CrossRef]

Dennler, G.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347 (2009).
[CrossRef]

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

Flores, C.

F. Svelto, C. Flores, A. Caon, R. Contini, and E. Rossi, “The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes,” Sol. Energy Mater. Sol. Cells 35, 99–104 (1994).
[CrossRef]

Fujiwara, H.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[CrossRef]

Gong, S. F.

G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69(9), 6394 (1991).
[CrossRef]

Gregora, I.

Ch. Ossadnik, S. Veprek, and I. Gregora, “Applicability of Raman scattering for the characterization of nanocrystalline silicon,” Thin Solid Films 337(1-2), 148–151 (1999).
[CrossRef]

Hasan, M. A.

G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69(9), 6394 (1991).
[CrossRef]

Hentzell, H. T. G.

G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69(9), 6394 (1991).
[CrossRef]

Huang, C.-F.

Im, J. S.

J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett. 70(25), 3434 (1997).
[CrossRef]

Jana, M.

D. Das and M. Jana, “Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme,” Sol. Energy Mater. Sol. Cells 81(2), 169–181 (2004).
[CrossRef]

Kanamori, Y.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[CrossRef]

Kang, B.

B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006).
[CrossRef]

Kawazu, Y.

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1, No. 12), 2698–2704 (1990).
[CrossRef]

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1 No. 4), 729–738 (1990).
[CrossRef]

Kenjo, A.

M. Miyao, I. Tsunoda, Y. Sadoh, and A. Kenjo, “Ion-beam stimulated solid-phase crystallization of amorphous Si on SiO2,” Thin Solid Films 383(1-2), 104–106 (2001).
[CrossRef]

Kessler, F.

F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy 77(6), 685–695 (2004).
[CrossRef]

Kondo, M.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[CrossRef]

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

Kudo, H.

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1, No. 12), 2698–2704 (1990).
[CrossRef]

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1 No. 4), 729–738 (1990).
[CrossRef]

Lee, Y.-C.

Li, B.

B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006).
[CrossRef]

Li, Dejie

Wenyan Zhang, Dejie Li, and Jian Wang. Phys, “Cu-induced poly-Si/SiO2/a-Si multilayer film with high reflectivity across the whole visible band,” Stat. Solidi RRL 3,82 (2009).
[CrossRef]

Li, J.

S. W. Russell, J. Li, and J. W. Mayer, “In situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix,” J. Appl. Phys. 70(9), 5153 (1991).
[CrossRef]

Li, X.

J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, “Reflectivity of porous-pyramids structured silicon surface,” Appl. Surf. Sci. 257(2), 472–475 (2010).
[CrossRef]

Lungenschmied, C.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347 (2009).
[CrossRef]

Maycock, P. D.

P. D. Maycock, “PV review: World Solar PV market continues explosive growth,” Refocus 6(5), 18–22 (2005).
[CrossRef]

Mayer, J. W.

S. W. Russell, J. Li, and J. W. Mayer, “In situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix,” J. Appl. Phys. 70(9), 5153 (1991).
[CrossRef]

McCann, M. J.

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 135–171 (2001).
[CrossRef]

McGehee, M. D.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

Miyao, M.

M. Miyao, I. Tsunoda, Y. Sadoh, and A. Kenjo, “Ion-beam stimulated solid-phase crystallization of amorphous Si on SiO2,” Thin Solid Films 383(1-2), 104–106 (2001).
[CrossRef]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Nafe, H.

N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldingera, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[CrossRef]

Onari, S.

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1 No. 4), 729–738 (1990).
[CrossRef]

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1, No. 12), 2698–2704 (1990).
[CrossRef]

Ossadnik, Ch.

Ch. Ossadnik, S. Veprek, and I. Gregora, “Applicability of Raman scattering for the characterization of nanocrystalline silicon,” Thin Solid Films 337(1-2), 148–151 (1999).
[CrossRef]

Peumans, P.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Pi, X.

J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, “Reflectivity of porous-pyramids structured silicon surface,” Appl. Surf. Sci. 257(2), 472–475 (2010).
[CrossRef]

Qiu, Y.

B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006).
[CrossRef]

Radnoczi, G.

G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69(9), 6394 (1991).
[CrossRef]

Rech, B.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Rim, S.-B.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Robertsson, A.

G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69(9), 6394 (1991).
[CrossRef]

Rossi, E.

F. Svelto, C. Flores, A. Caon, R. Contini, and E. Rossi, “The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes,” Sol. Energy Mater. Sol. Cells 35, 99–104 (1994).
[CrossRef]

Rudmann, D.

F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy 77(6), 685–695 (2004).
[CrossRef]

Russell, S. W.

S. W. Russell, J. Li, and J. W. Mayer, “In situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix,” J. Appl. Phys. 70(9), 5153 (1991).
[CrossRef]

Sadoh, Y.

M. Miyao, I. Tsunoda, Y. Sadoh, and A. Kenjo, “Ion-beam stimulated solid-phase crystallization of amorphous Si on SiO2,” Thin Solid Films 383(1-2), 104–106 (2001).
[CrossRef]

Sai, H.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[CrossRef]

Sammes, N. M.

N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldingera, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[CrossRef]

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

Scully, S. R.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

Sposili, R. S.

J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett. 70(25), 3434 (1997).
[CrossRef]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292 (1977).
[CrossRef]

Svelto, F.

F. Svelto, C. Flores, A. Caon, R. Contini, and E. Rossi, “The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes,” Sol. Energy Mater. Sol. Cells 35, 99–104 (1994).
[CrossRef]

Tompsett, G. A.

N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldingera, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[CrossRef]

Tsunoda, I.

M. Miyao, I. Tsunoda, Y. Sadoh, and A. Kenjo, “Ion-beam stimulated solid-phase crystallization of amorphous Si on SiO2,” Thin Solid Films 383(1-2), 104–106 (2001).
[CrossRef]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Veprek, S.

Ch. Ossadnik, S. Veprek, and I. Gregora, “Applicability of Raman scattering for the characterization of nanocrystalline silicon,” Thin Solid Films 337(1-2), 148–151 (1999).
[CrossRef]

Wang, Jian

Wenyan Zhang, Dejie Li, and Jian Wang. Phys, “Cu-induced poly-Si/SiO2/a-Si multilayer film with high reflectivity across the whole visible band,” Stat. Solidi RRL 3,82 (2009).
[CrossRef]

Wang, L.

J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, “Reflectivity of porous-pyramids structured silicon surface,” Appl. Surf. Sci. 257(2), 472–475 (2010).
[CrossRef]

B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006).
[CrossRef]

Wang, P.

B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006).
[CrossRef]

Weber, K. J.

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 135–171 (2001).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292 (1977).
[CrossRef]

Wu, M.-L.

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

Xiao, J.

J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, “Reflectivity of porous-pyramids structured silicon surface,” Appl. Surf. Sci. 257(2), 472–475 (2010).
[CrossRef]

Yang, D.

J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, “Reflectivity of porous-pyramids structured silicon surface,” Appl. Surf. Sci. 257(2), 472–475 (2010).
[CrossRef]

Zhang, Wenyan

Wenyan Zhang, Dejie Li, and Jian Wang. Phys, “Cu-induced poly-Si/SiO2/a-Si multilayer film with high reflectivity across the whole visible band,” Stat. Solidi RRL 3,82 (2009).
[CrossRef]

Zhao, S.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292 (1977).
[CrossRef]

J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett. 70(25), 3434 (1997).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, “Reflectivity of porous-pyramids structured silicon surface,” Appl. Surf. Sci. 257(2), 472–475 (2010).
[CrossRef]

Energy Environ. Sci. (1)

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347 (2009).
[CrossRef]

J. Appl. Phys. (2)

G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69(9), 6394 (1991).
[CrossRef]

S. W. Russell, J. Li, and J. W. Mayer, “In situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix,” J. Appl. Phys. 70(9), 5153 (1991).
[CrossRef]

J. Eur. Ceram. Soc. (1)

N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldingera, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1 No. 4), 729–738 (1990).
[CrossRef]

Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Suicide Formation,” Jpn. J. Appl. Phys. 29(Part 1, No. 12), 2698–2704 (1990).
[CrossRef]

Opt. Express (1)

Prog. Photovoltaics (1)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12(23), 113–142 (2004).
[CrossRef]

Refocus (1)

P. D. Maycock, “PV review: World Solar PV market continues explosive growth,” Refocus 6(5), 18–22 (2005).
[CrossRef]

Sol. Energy (2)

F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy 77(6), 685–695 (2004).
[CrossRef]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (5)

F. Svelto, C. Flores, A. Caon, R. Contini, and E. Rossi, “The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes,” Sol. Energy Mater. Sol. Cells 35, 99–104 (1994).
[CrossRef]

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 135–171 (2001).
[CrossRef]

R. W. Birkmire, “Compound polycrystalline solar cells: Recent progress and Y2 K perspective,” Sol. Energy Mater. Sol. Cells 65(1-4), 17–28 (2001).
[CrossRef]

B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006).
[CrossRef]

D. Das and M. Jana, “Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme,” Sol. Energy Mater. Sol. Cells 81(2), 169–181 (2004).
[CrossRef]

Stat. Solidi RRL (1)

Wenyan Zhang, Dejie Li, and Jian Wang. Phys, “Cu-induced poly-Si/SiO2/a-Si multilayer film with high reflectivity across the whole visible band,” Stat. Solidi RRL 3,82 (2009).
[CrossRef]

Thin Solid Films (3)

M. Miyao, I. Tsunoda, Y. Sadoh, and A. Kenjo, “Ion-beam stimulated solid-phase crystallization of amorphous Si on SiO2,” Thin Solid Films 383(1-2), 104–106 (2001).
[CrossRef]

D. Bonnet, “Manufacturing of CSS CdTe solar cells,” Thin Solid Films 361–362, 547 (2000).
[CrossRef]

Ch. Ossadnik, S. Veprek, and I. Gregora, “Applicability of Raman scattering for the characterization of nanocrystalline silicon,” Thin Solid Films 337(1-2), 148–151 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics