Abstract

A class of thermal stable of green-emitting phosphors Ba3Y(PO4)3:Ce3+,Tb3+ (BYP:Ce3+,Tb3+) and red-emitting phosphors Ca3Y(AlO)3(BO3)4:Eu3+ (CYAB:Eu3+) for white-light fluorescent lamps were synthesized by high temperature solid-state reaction. We observed a decay of only 3% at 150 °C for BYP:0.25Ce3+,0.25Tb3+ (3% for LaPO4:Ce3+,Tb3+), and a decay of 4% for CYAB:0.5Eu3+ (7% for Y2O3:Eu3+, 24% for Y2O2S:Eu3+). The emission intensity of composition-optimized Ba3(Y0.5Ce0.25Tb0.25)(PO4)3 is 70% of that of commercial LaPO4:Ce3+,Tb3+ phosphors, and the CIE chromaticity coordinates are found to be (0.323, 0.534). The emission intensity of Ca3(Y0.5Eu0.5)(AlO)3(BO3)4 is 70% and 83% of those of Y2O3:Eu3+ and Y2O2S:Eu3+ phosphors, respectively, and the CIE chromaticity coordinates are redder (0.652, 0.342) than those of Y2O3:Eu3+ (0.645, 0.347) and Y2O2S:Eu3+ (0.647, 0.343). A white-light fluorescent lamp is fabricated using composition-optimized Ba3(Y0.5Ce0.25Tb0.25)(PO4)3 and Ca3(Y0.5Eu0.5)(AlO)3(BO3)4 phosphors and matching blue-emitting phosphors. The results indicate that the quality of the brightness and color reproduction is suitable for application in shortwave UV fluorescent lamps. The white-light fluorescent lamp displays CIE chromaticity coordinates of x = 0.33, y = 0.35, a warm white light with a correlated color temperature of 5646 K, and a color-rendering index of Ra = 70.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shimomura and N. Kijima, “Effect of ammonium chloride addition on spray pyrolysis synthesis of BaMgAl10O17:Eu2+ phosphor without post-heating,” J. Electrochem. Soc. 151(8), H192–H197 (2004).
    [CrossRef]
  2. S. Fujihara, Y. Kishiki, and T. Kimura, “Synthesis process of BaMgAl10O17:Eu2+ from sol-gel-derived Eu2+-activated fluoride precursors without H2 annealing treatments,” J. Electrochem. Soc. 151(10), H217–H220 (2004).
    [CrossRef]
  3. Y. Shimomura and N. Kijima, “High-luminance Y2O3:Eu3+ phosphor synthesis by high temperature and alkali metal ion-added spray pyrolysis,” J. Electrochem. Soc. 151(4), H86–H92 (2004).
    [CrossRef]
  4. S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
    [CrossRef]
  5. W. van Schaik, S. Lizzo, W. Smit, and G. Blass, “Influence of impurities on the luminescence quantum efficiency of (La, Ce, Tb)PO4,” J. Electrochem. Soc. 140(1), 216–222 (1993).
    [CrossRef]
  6. X. Hu, S. Yan, L. Ma, G. Wan, and J. Hu, “Preparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties,” Powder Technol. 192(1), 27–32 (2009).
    [CrossRef]
  7. J. M. P. J. Verstegen, D. Radielović, and L. E. Vrenken, “A new generation of “Deluxe” fluorescent lamps, combining an efficacy of 80 Lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
    [CrossRef]
  8. K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
    [CrossRef] [PubMed]
  9. A. M. Srivastava and C. R. Ronda, “Phosphors,” Electrochem. Soc. Interface 12, 48–51 (2003).
  10. S. Kitsinelis, R. Devonshire, D. A. Stone, and R. C. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D Appl. Phys. 38(17), 3208–3216 (2005).
    [CrossRef]
  11. JCPDS: 044–0318.
  12. ICSD: 172154.
  13. C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
    [CrossRef] [PubMed]
  14. Y. C. Chiu, W. R. Liu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescent properties and energy transfer of green-emitting Ca3Y2(Si3O9)2:Ce3+,Tb3+ Phosphor,” J. Electrochem. Soc. 156, J221–J225 (2009).
    [CrossRef]
  15. Y. Huang, C. Jiang, Y. Cao, L. Shi, and H. J. Seo, “Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) with whitlockite structure,” Mater. Res. Bull. 44(4), 793–798 (2009).
    [CrossRef]

2010

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[CrossRef] [PubMed]

2009

Y. C. Chiu, W. R. Liu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescent properties and energy transfer of green-emitting Ca3Y2(Si3O9)2:Ce3+,Tb3+ Phosphor,” J. Electrochem. Soc. 156, J221–J225 (2009).
[CrossRef]

Y. Huang, C. Jiang, Y. Cao, L. Shi, and H. J. Seo, “Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) with whitlockite structure,” Mater. Res. Bull. 44(4), 793–798 (2009).
[CrossRef]

X. Hu, S. Yan, L. Ma, G. Wan, and J. Hu, “Preparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties,” Powder Technol. 192(1), 27–32 (2009).
[CrossRef]

2006

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

2005

S. Kitsinelis, R. Devonshire, D. A. Stone, and R. C. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D Appl. Phys. 38(17), 3208–3216 (2005).
[CrossRef]

2004

Y. Shimomura and N. Kijima, “Effect of ammonium chloride addition on spray pyrolysis synthesis of BaMgAl10O17:Eu2+ phosphor without post-heating,” J. Electrochem. Soc. 151(8), H192–H197 (2004).
[CrossRef]

S. Fujihara, Y. Kishiki, and T. Kimura, “Synthesis process of BaMgAl10O17:Eu2+ from sol-gel-derived Eu2+-activated fluoride precursors without H2 annealing treatments,” J. Electrochem. Soc. 151(10), H217–H220 (2004).
[CrossRef]

Y. Shimomura and N. Kijima, “High-luminance Y2O3:Eu3+ phosphor synthesis by high temperature and alkali metal ion-added spray pyrolysis,” J. Electrochem. Soc. 151(4), H86–H92 (2004).
[CrossRef]

S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
[CrossRef]

2003

A. M. Srivastava and C. R. Ronda, “Phosphors,” Electrochem. Soc. Interface 12, 48–51 (2003).

1993

W. van Schaik, S. Lizzo, W. Smit, and G. Blass, “Influence of impurities on the luminescence quantum efficiency of (La, Ce, Tb)PO4,” J. Electrochem. Soc. 140(1), 216–222 (1993).
[CrossRef]

1974

J. M. P. J. Verstegen, D. Radielović, and L. E. Vrenken, “A new generation of “Deluxe” fluorescent lamps, combining an efficacy of 80 Lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

Blass, G.

W. van Schaik, S. Lizzo, W. Smit, and G. Blass, “Influence of impurities on the luminescence quantum efficiency of (La, Ce, Tb)PO4,” J. Electrochem. Soc. 140(1), 216–222 (1993).
[CrossRef]

Cao, Y.

Y. Huang, C. Jiang, Y. Cao, L. Shi, and H. J. Seo, “Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) with whitlockite structure,” Mater. Res. Bull. 44(4), 793–798 (2009).
[CrossRef]

Chen, T. M.

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[CrossRef] [PubMed]

Y. C. Chiu, W. R. Liu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescent properties and energy transfer of green-emitting Ca3Y2(Si3O9)2:Ce3+,Tb3+ Phosphor,” J. Electrochem. Soc. 156, J221–J225 (2009).
[CrossRef]

Chiu, Y. C.

Y. C. Chiu, W. R. Liu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescent properties and energy transfer of green-emitting Ca3Y2(Si3O9)2:Ce3+,Tb3+ Phosphor,” J. Electrochem. Soc. 156, J221–J225 (2009).
[CrossRef]

Choi, J. Y.

S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
[CrossRef]

Choi, S. S.

S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
[CrossRef]

Devonshire, R.

S. Kitsinelis, R. Devonshire, D. A. Stone, and R. C. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D Appl. Phys. 38(17), 3208–3216 (2005).
[CrossRef]

Fujihara, S.

S. Fujihara, Y. Kishiki, and T. Kimura, “Synthesis process of BaMgAl10O17:Eu2+ from sol-gel-derived Eu2+-activated fluoride precursors without H2 annealing treatments,” J. Electrochem. Soc. 151(10), H217–H220 (2004).
[CrossRef]

Ghildiyal, R.

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Hu, J.

X. Hu, S. Yan, L. Ma, G. Wan, and J. Hu, “Preparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties,” Powder Technol. 192(1), 27–32 (2009).
[CrossRef]

Hu, X.

X. Hu, S. Yan, L. Ma, G. Wan, and J. Hu, “Preparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties,” Powder Technol. 192(1), 27–32 (2009).
[CrossRef]

Huang, C. H.

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, C. Jiang, Y. Cao, L. Shi, and H. J. Seo, “Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) with whitlockite structure,” Mater. Res. Bull. 44(4), 793–798 (2009).
[CrossRef]

Jang, S. M.

Y. C. Chiu, W. R. Liu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescent properties and energy transfer of green-emitting Ca3Y2(Si3O9)2:Ce3+,Tb3+ Phosphor,” J. Electrochem. Soc. 156, J221–J225 (2009).
[CrossRef]

Jiang, C.

Y. Huang, C. Jiang, Y. Cao, L. Shi, and H. J. Seo, “Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) with whitlockite structure,” Mater. Res. Bull. 44(4), 793–798 (2009).
[CrossRef]

Kang, S. S.

S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
[CrossRef]

Kijima, N.

Y. Shimomura and N. Kijima, “High-luminance Y2O3:Eu3+ phosphor synthesis by high temperature and alkali metal ion-added spray pyrolysis,” J. Electrochem. Soc. 151(4), H86–H92 (2004).
[CrossRef]

Y. Shimomura and N. Kijima, “Effect of ammonium chloride addition on spray pyrolysis synthesis of BaMgAl10O17:Eu2+ phosphor without post-heating,” J. Electrochem. Soc. 151(8), H192–H197 (2004).
[CrossRef]

Kimura, T.

S. Fujihara, Y. Kishiki, and T. Kimura, “Synthesis process of BaMgAl10O17:Eu2+ from sol-gel-derived Eu2+-activated fluoride precursors without H2 annealing treatments,” J. Electrochem. Soc. 151(10), H217–H220 (2004).
[CrossRef]

Kishiki, Y.

S. Fujihara, Y. Kishiki, and T. Kimura, “Synthesis process of BaMgAl10O17:Eu2+ from sol-gel-derived Eu2+-activated fluoride precursors without H2 annealing treatments,” J. Electrochem. Soc. 151(10), H217–H220 (2004).
[CrossRef]

Kitsinelis, S.

S. Kitsinelis, R. Devonshire, D. A. Stone, and R. C. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D Appl. Phys. 38(17), 3208–3216 (2005).
[CrossRef]

Kuo, T. W.

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[CrossRef] [PubMed]

Kwak, M. G.

S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
[CrossRef]

Liu, W. R.

Y. C. Chiu, W. R. Liu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescent properties and energy transfer of green-emitting Ca3Y2(Si3O9)2:Ce3+,Tb3+ Phosphor,” J. Electrochem. Soc. 156, J221–J225 (2009).
[CrossRef]

Lizzo, S.

W. van Schaik, S. Lizzo, W. Smit, and G. Blass, “Influence of impurities on the luminescence quantum efficiency of (La, Ce, Tb)PO4,” J. Electrochem. Soc. 140(1), 216–222 (1993).
[CrossRef]

Ma, L.

X. Hu, S. Yan, L. Ma, G. Wan, and J. Hu, “Preparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties,” Powder Technol. 192(1), 27–32 (2009).
[CrossRef]

Murthy, K. V. R.

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Nam, S. H.

S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
[CrossRef]

Natarajan, V.

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Page, A. G.

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Pallavi, S. P.

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Park, J. K.

S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
[CrossRef]

Parmar, M. C.

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Patel, Y. S.

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Radielovic, D.

J. M. P. J. Verstegen, D. Radielović, and L. E. Vrenken, “A new generation of “Deluxe” fluorescent lamps, combining an efficacy of 80 Lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

Ravi Kumar, V.

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Ronda, C. R.

A. M. Srivastava and C. R. Ronda, “Phosphors,” Electrochem. Soc. Interface 12, 48–51 (2003).

Sai Prasad, A. S.

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Seo, H. J.

Y. Huang, C. Jiang, Y. Cao, L. Shi, and H. J. Seo, “Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) with whitlockite structure,” Mater. Res. Bull. 44(4), 793–798 (2009).
[CrossRef]

Shi, L.

Y. Huang, C. Jiang, Y. Cao, L. Shi, and H. J. Seo, “Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) with whitlockite structure,” Mater. Res. Bull. 44(4), 793–798 (2009).
[CrossRef]

Shimomura, Y.

Y. Shimomura and N. Kijima, “Effect of ammonium chloride addition on spray pyrolysis synthesis of BaMgAl10O17:Eu2+ phosphor without post-heating,” J. Electrochem. Soc. 151(8), H192–H197 (2004).
[CrossRef]

Y. Shimomura and N. Kijima, “High-luminance Y2O3:Eu3+ phosphor synthesis by high temperature and alkali metal ion-added spray pyrolysis,” J. Electrochem. Soc. 151(4), H86–H92 (2004).
[CrossRef]

Smit, W.

W. van Schaik, S. Lizzo, W. Smit, and G. Blass, “Influence of impurities on the luminescence quantum efficiency of (La, Ce, Tb)PO4,” J. Electrochem. Soc. 140(1), 216–222 (1993).
[CrossRef]

Song, Y. S.

S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
[CrossRef]

Srivastava, A. M.

A. M. Srivastava and C. R. Ronda, “Phosphors,” Electrochem. Soc. Interface 12, 48–51 (2003).

Stone, D. A.

S. Kitsinelis, R. Devonshire, D. A. Stone, and R. C. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D Appl. Phys. 38(17), 3208–3216 (2005).
[CrossRef]

Tozer, R. C.

S. Kitsinelis, R. Devonshire, D. A. Stone, and R. C. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D Appl. Phys. 38(17), 3208–3216 (2005).
[CrossRef]

van Schaik, W.

W. van Schaik, S. Lizzo, W. Smit, and G. Blass, “Influence of impurities on the luminescence quantum efficiency of (La, Ce, Tb)PO4,” J. Electrochem. Soc. 140(1), 216–222 (1993).
[CrossRef]

Verstegen, J. M. P. J.

J. M. P. J. Verstegen, D. Radielović, and L. E. Vrenken, “A new generation of “Deluxe” fluorescent lamps, combining an efficacy of 80 Lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

Vrenken, L. E.

J. M. P. J. Verstegen, D. Radielović, and L. E. Vrenken, “A new generation of “Deluxe” fluorescent lamps, combining an efficacy of 80 Lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

Wan, G.

X. Hu, S. Yan, L. Ma, G. Wan, and J. Hu, “Preparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties,” Powder Technol. 192(1), 27–32 (2009).
[CrossRef]

Yan, S.

X. Hu, S. Yan, L. Ma, G. Wan, and J. Hu, “Preparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties,” Powder Technol. 192(1), 27–32 (2009).
[CrossRef]

Yeh, Y. T.

Y. C. Chiu, W. R. Liu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescent properties and energy transfer of green-emitting Ca3Y2(Si3O9)2:Ce3+,Tb3+ Phosphor,” J. Electrochem. Soc. 156, J221–J225 (2009).
[CrossRef]

ACS Appl. Mater. Interfaces

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[CrossRef] [PubMed]

Electrochem. Soc. Interface

A. M. Srivastava and C. R. Ronda, “Phosphors,” Electrochem. Soc. Interface 12, 48–51 (2003).

J. Electrochem. Soc.

Y. C. Chiu, W. R. Liu, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Luminescent properties and energy transfer of green-emitting Ca3Y2(Si3O9)2:Ce3+,Tb3+ Phosphor,” J. Electrochem. Soc. 156, J221–J225 (2009).
[CrossRef]

Y. Shimomura and N. Kijima, “Effect of ammonium chloride addition on spray pyrolysis synthesis of BaMgAl10O17:Eu2+ phosphor without post-heating,” J. Electrochem. Soc. 151(8), H192–H197 (2004).
[CrossRef]

S. Fujihara, Y. Kishiki, and T. Kimura, “Synthesis process of BaMgAl10O17:Eu2+ from sol-gel-derived Eu2+-activated fluoride precursors without H2 annealing treatments,” J. Electrochem. Soc. 151(10), H217–H220 (2004).
[CrossRef]

Y. Shimomura and N. Kijima, “High-luminance Y2O3:Eu3+ phosphor synthesis by high temperature and alkali metal ion-added spray pyrolysis,” J. Electrochem. Soc. 151(4), H86–H92 (2004).
[CrossRef]

W. van Schaik, S. Lizzo, W. Smit, and G. Blass, “Influence of impurities on the luminescence quantum efficiency of (La, Ce, Tb)PO4,” J. Electrochem. Soc. 140(1), 216–222 (1993).
[CrossRef]

J. M. P. J. Verstegen, D. Radielović, and L. E. Vrenken, “A new generation of “Deluxe” fluorescent lamps, combining an efficacy of 80 Lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

J. Phys. D Appl. Phys.

S. Kitsinelis, R. Devonshire, D. A. Stone, and R. C. Tozer, “Medium pressure mercury discharge for use as an intense white light source,” J. Phys. D Appl. Phys. 38(17), 3208–3216 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3:Eu phosphor derived by solution-combustion method,” Jpn. J. Appl. Phys. 43(No. 12A), L1507–L1509 (2004).
[CrossRef]

Mater. Res. Bull.

Y. Huang, C. Jiang, Y. Cao, L. Shi, and H. J. Seo, “Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) with whitlockite structure,” Mater. Res. Bull. 44(4), 793–798 (2009).
[CrossRef]

Powder Technol.

X. Hu, S. Yan, L. Ma, G. Wan, and J. Hu, “Preparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties,” Powder Technol. 192(1), 27–32 (2009).
[CrossRef]

Radiat. Prot. Dosimetry

K. V. R. Murthy, S. P. Pallavi, R. Ghildiyal, M. C. Parmar, Y. S. Patel, V. Ravi Kumar, A. S. Sai Prasad, V. Natarajan, and A. G. Page, “Compact fluorescent lamp phosphors in accidental radiation monitoring,” Radiat. Prot. Dosimetry 120(1-4), 238–241 (2006).
[CrossRef] [PubMed]

Other

JCPDS: 044–0318.

ICSD: 172154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

X-ray powder diffraction patterns for BYP, BYP:Ce3+, BYP:Ce3+,Tb3+ (JCPDS:044-0318) and CYAB, CYAB:Eu3+ (ICSD:172154).

Fig. 2
Fig. 2

Concentration dependence of excitation and emission intensities for (a) BYP:0.25Ce3+,xTb3+ phosphors and (b) CYAB:xEu3+ phosphors (λex = 254 nm).

Fig. 3
Fig. 3

Relative emission intensities of (a) BYP:0.25Ce3+,0.25Tb3+ and commercial LaPO4:Ce3+,Tb3+ phosphor; (b) CYAB:0.5Eu3+ and commercial Y2O3:Eu3+ or Y2O3:Eu3+ phosphors excited at 254 nm.

Fig. 4
Fig. 4

Temperature dependence of relative emission intensities for (a) BYP:0.25Ce3+,0.25Tb3+; (b) CYAB:0.5Eu3+ex = 254 nm). The insets show comparisons of thermal stability between (a) BYP:Ce3+,Tb3+ and LaPO4:Ce3+,Tb3+; (b) CYAB:Eu3+, Y2O3:Eu3+ and Y2O2S:Eu3+ex = 254 nm).

Fig. 5
Fig. 5

CIE chromaticity diagram of BYP:0.25Ce3+,0.25Tb3+ and CYAB:0.5Eu3+ phosphors mixed with different weight ratios and excited at 254 nm. (1) 1:0; (2) 4:1; (3) 3:1; (4) 3:2; (5) 3:3; (6) 2:3; (7) 1:3; (8) 0:1; and commercial phosphors (9) Y2O2S:Eu3+; (10) Y2O3:Eu3+; (11) LaPO4:Ce3+,Tb3+; (12) BaMgAl10O17:Eu2+ ; (13) white-light phosphors (mixing of BYP:0.25Ce3+,0.25Tb3+、CYAB:0.5Eu3+、BaMgAl10O17:Eu2+); (14) white-light Fluorescent Lamp.

Fig. 6
Fig. 6

PL spectrum of a fluorescent lamp fabricated using mercury vapor and mixture of BAM:Eu2+, BYP:0.25Ce3+,0.25Tb3+, and CYAB:0.5Eu3+ phosphors. The insets show the 8 W white-light fluorescent lamps.

Metrics