Abstract

We report the first demonstration of a broadband trace gas sensor based on chirp-pulse terahertz spectroscopy. The advent of newly developed solid state sources and sensitive heterodyne detectors for the terahertz frequency range have made it possible to generate and detect precise arbitrary waveforms at THz frequencies with ultra-low phase noise. In order to maximize sensitivity, the sample gas is first polarized using sub-μs chirped THz pulses and the free inductive decays (FIDs) are then detected using a heterodyne receiver. This approach allows for a rapid broadband multi-component sensing with low parts in 109 (ppb) sensitivities and spectral frequency accuracy of <20 kHz in real-time. Such a system can be configured into a portable, easy to use, and relatively inexpensive sensing platform.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Gerecht, D. Gu, L. You, and K. S. Yngvesson, “A passive heterodyne hot electron bolometer imager operating at 850 gigahertz,” IEEE Trans. Microw. Theory Tech. 56(5), 1083–1091 (2008).
    [CrossRef]
  2. I. R. Medvedev, M. Behnke, and F. C. De Lucia, “Chemical analysis in the submillimetre spectral region with a compact solid state system,” Analyst (Lond.) 131(12), 1299–1307 (2006).
    [CrossRef]
  3. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
    [CrossRef]
  4. T. Uno and H. Tabata, “In situ measurement of Combustion Gas Using Terahertz Time Domain Spectroscopy Setup for Gas Phase Spectroscopy and Measurement of Solid Sample,” Jpn. J. Appl. Phys. 49(4), 04DL17 (2010).
    [CrossRef]
  5. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
    [CrossRef] [PubMed]
  6. I. R. Medvedev, C. F. Neese, G. M. Plummer, and F. C. De Lucia, “Submillimeter spectroscopy for chemical analysis with absolute specificity,” Opt. Lett. 35(10), 1533–1535 (2010).
    [CrossRef] [PubMed]
  7. B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, “Measuring picosecond Isomerization kinetics via broadband microwave spectroscopy,” Science 320(5878), 924–928 (2008).
    [CrossRef] [PubMed]
  8. Certain equipment or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available.
  9. Virginia Diodes, Inc, http://www.virginiadiodes.com/multipliers.htm .
  10. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transf. 91(3), 287–295 (2005).
    [CrossRef]
  11. V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008).
    [CrossRef]
  12. V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008).
    [CrossRef]
  13. R. G. Pilston and J. U. White, “A Long Path Gas Absorption Cell,” J. Opt. Soc. Am. 44(7), 572 (1954).
    [CrossRef]
  14. D. C. Tobin, L. L. Strow, W. J. Lafferty, and W. B. Olson, “Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor,” Appl. Opt. 35(24), 4724–4734 (1996).
    [CrossRef] [PubMed]
  15. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
    [CrossRef]
  16. H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, “The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists,” J. Mol. Struct. 742(1-3), 215–227 (2005).
    [CrossRef]
  17. B. N. Taylor and C. E. Kuyatt, C. E. NIST Tech. Note 1297 1994. The publication may be downloaded from: http://physics.nist.gov/Pubs/guidelines/contents.html
  18. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “THz laser study of self-pressure and temperature broadening and shifts of water lines for pressures up to 1.4 kPa,” J. Quant. Spectrosc. Radiat. Transf. 87(3-4), 377–385 (2004).
    [CrossRef]

2010 (3)

2008 (4)

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, “Measuring picosecond Isomerization kinetics via broadband microwave spectroscopy,” Science 320(5878), 924–928 (2008).
[CrossRef] [PubMed]

E. Gerecht, D. Gu, L. You, and K. S. Yngvesson, “A passive heterodyne hot electron bolometer imager operating at 850 gigahertz,” IEEE Trans. Microw. Theory Tech. 56(5), 1083–1091 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008).
[CrossRef]

2007 (1)

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

2006 (1)

I. R. Medvedev, M. Behnke, and F. C. De Lucia, “Chemical analysis in the submillimetre spectral region with a compact solid state system,” Analyst (Lond.) 131(12), 1299–1307 (2006).
[CrossRef]

2005 (3)

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transf. 91(3), 287–295 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, “The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists,” J. Mol. Struct. 742(1-3), 215–227 (2005).
[CrossRef]

2004 (1)

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “THz laser study of self-pressure and temperature broadening and shifts of water lines for pressures up to 1.4 kPa,” J. Quant. Spectrosc. Radiat. Transf. 87(3-4), 377–385 (2004).
[CrossRef]

1996 (1)

1954 (1)

Adler, F.

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Behnke, M.

I. R. Medvedev, M. Behnke, and F. C. De Lucia, “Chemical analysis in the submillimetre spectral region with a compact solid state system,” Analyst (Lond.) 131(12), 1299–1307 (2006).
[CrossRef]

Bigourd, D.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Bocquet, R.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

Briles, T. C.

Brown, G. G.

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, “Measuring picosecond Isomerization kinetics via broadband microwave spectroscopy,” Science 320(5878), 924–928 (2008).
[CrossRef] [PubMed]

Brown, L.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Carleer, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Cazier, F.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

Chackerianjr, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Chrisbenner, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Cossel, K. C.

Coudert, L.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Cuisset, A.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

De Lucia, F. C.

I. R. Medvedev, C. F. Neese, G. M. Plummer, and F. C. De Lucia, “Submillimeter spectroscopy for chemical analysis with absolute specificity,” Opt. Lett. 35(10), 1533–1535 (2010).
[CrossRef] [PubMed]

I. R. Medvedev, M. Behnke, and F. C. De Lucia, “Chemical analysis in the submillimetre spectral region with a compact solid state system,” Analyst (Lond.) 131(12), 1299–1307 (2006).
[CrossRef]

Dewaele, D.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

Dian, B. C.

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, “Measuring picosecond Isomerization kinetics via broadband microwave spectroscopy,” Science 320(5878), 924–928 (2008).
[CrossRef] [PubMed]

Douglass, K. O.

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, “Measuring picosecond Isomerization kinetics via broadband microwave spectroscopy,” Science 320(5878), 924–928 (2008).
[CrossRef] [PubMed]

Foltynowicz, A.

Fraser, G. T.

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transf. 91(3), 287–295 (2005).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “THz laser study of self-pressure and temperature broadening and shifts of water lines for pressures up to 1.4 kPa,” J. Quant. Spectrosc. Radiat. Transf. 87(3-4), 377–385 (2004).
[CrossRef]

Gerecht, E.

E. Gerecht, D. Gu, L. You, and K. S. Yngvesson, “A passive heterodyne hot electron bolometer imager operating at 850 gigahertz,” IEEE Trans. Microw. Theory Tech. 56(5), 1083–1091 (2008).
[CrossRef]

Gu, D.

E. Gerecht, D. Gu, L. You, and K. S. Yngvesson, “A passive heterodyne hot electron bolometer imager operating at 850 gigahertz,” IEEE Trans. Microw. Theory Tech. 56(5), 1083–1091 (2008).
[CrossRef]

Hartl, I.

Hindle, F.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Lafferty, W. J.

Ma, Q.

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008).
[CrossRef]

Maslowski, P.

Matton, S.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

Medvedev, I. R.

I. R. Medvedev, C. F. Neese, G. M. Plummer, and F. C. De Lucia, “Submillimeter spectroscopy for chemical analysis with absolute specificity,” Opt. Lett. 35(10), 1533–1535 (2010).
[CrossRef] [PubMed]

I. R. Medvedev, M. Behnke, and F. C. De Lucia, “Chemical analysis in the submillimetre spectral region with a compact solid state system,” Analyst (Lond.) 131(12), 1299–1307 (2006).
[CrossRef]

Mouret, G.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

Müller, H. S. P.

H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, “The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists,” J. Mol. Struct. 742(1-3), 215–227 (2005).
[CrossRef]

Neese, C. F.

Nouali, H.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

Olson, W. B.

Pate, B. H.

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, “Measuring picosecond Isomerization kinetics via broadband microwave spectroscopy,” Science 320(5878), 924–928 (2008).
[CrossRef] [PubMed]

Pilston, R. G.

Plummer, G. M.

Plusquellic, D. F.

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transf. 91(3), 287–295 (2005).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “THz laser study of self-pressure and temperature broadening and shifts of water lines for pressures up to 1.4 kPa,” J. Quant. Spectrosc. Radiat. Transf. 87(3-4), 377–385 (2004).
[CrossRef]

Podobedov, V. B.

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transf. 91(3), 287–295 (2005).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “THz laser study of self-pressure and temperature broadening and shifts of water lines for pressures up to 1.4 kPa,” J. Quant. Spectrosc. Radiat. Transf. 87(3-4), 377–385 (2004).
[CrossRef]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Schlöder, F.

H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, “The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists,” J. Mol. Struct. 742(1-3), 215–227 (2005).
[CrossRef]

Siegrist, K. E.

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008).
[CrossRef]

Strow, L. L.

Stutzki, J.

H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, “The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists,” J. Mol. Struct. 742(1-3), 215–227 (2005).
[CrossRef]

Tabata, H.

T. Uno and H. Tabata, “In situ measurement of Combustion Gas Using Terahertz Time Domain Spectroscopy Setup for Gas Phase Spectroscopy and Measurement of Solid Sample,” Jpn. J. Appl. Phys. 49(4), 04DL17 (2010).
[CrossRef]

Tipping, R. H.

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008).
[CrossRef]

Tobin, D. C.

Uno, T.

T. Uno and H. Tabata, “In situ measurement of Combustion Gas Using Terahertz Time Domain Spectroscopy Setup for Gas Phase Spectroscopy and Measurement of Solid Sample,” Jpn. J. Appl. Phys. 49(4), 04DL17 (2010).
[CrossRef]

White, J. U.

Winnewisser, G.

H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, “The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists,” J. Mol. Struct. 742(1-3), 215–227 (2005).
[CrossRef]

Ye, J.

Yngvesson, K. S.

E. Gerecht, D. Gu, L. You, and K. S. Yngvesson, “A passive heterodyne hot electron bolometer imager operating at 850 gigahertz,” IEEE Trans. Microw. Theory Tech. 56(5), 1083–1091 (2008).
[CrossRef]

You, L.

E. Gerecht, D. Gu, L. You, and K. S. Yngvesson, “A passive heterodyne hot electron bolometer imager operating at 850 gigahertz,” IEEE Trans. Microw. Theory Tech. 56(5), 1083–1091 (2008).
[CrossRef]

Analyst (Lond.) (1)

I. R. Medvedev, M. Behnke, and F. C. De Lucia, “Chemical analysis in the submillimetre spectral region with a compact solid state system,” Analyst (Lond.) 131(12), 1299–1307 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

E. Gerecht, D. Gu, L. You, and K. S. Yngvesson, “A passive heterodyne hot electron bolometer imager operating at 850 gigahertz,” IEEE Trans. Microw. Theory Tech. 56(5), 1083–1091 (2008).
[CrossRef]

J. Mol. Spectrosc. (1)

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008).
[CrossRef]

J. Mol. Struct. (1)

H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, “The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists,” J. Mol. Struct. 742(1-3), 215–227 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transf. (4)

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transf. 91(3), 287–295 (2005).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “THz laser study of self-pressure and temperature broadening and shifts of water lines for pressures up to 1.4 kPa,” J. Quant. Spectrosc. Radiat. Transf. 87(3-4), 377–385 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Uno and H. Tabata, “In situ measurement of Combustion Gas Using Terahertz Time Domain Spectroscopy Setup for Gas Phase Spectroscopy and Measurement of Solid Sample,” Jpn. J. Appl. Phys. 49(4), 04DL17 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Science (1)

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, “Measuring picosecond Isomerization kinetics via broadband microwave spectroscopy,” Science 320(5878), 924–928 (2008).
[CrossRef] [PubMed]

Other (3)

Certain equipment or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available.

Virginia Diodes, Inc, http://www.virginiadiodes.com/multipliers.htm .

B. N. Taylor and C. E. Kuyatt, C. E. NIST Tech. Note 1297 1994. The publication may be downloaded from: http://physics.nist.gov/Pubs/guidelines/contents.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A cartoon depicting the Free Induction Decay (FID) process.

Fig. 2
Fig. 2

The left panel illustrates the power spectrum of a 100 ns duration chirp pulse with 450 MHz bandwidth at a center frequency of 11.48 GHz. The upper sideband of the mixer output from the AWG and synthesizer was filtered with tunable YIG filter. The synthesizer was set to 9.08 GHz and the center frequency of the AWG was 2.4 GHz. The center frequency offset of the AWG was optimized for spectral purity. The final chirp pulse has a high level of spectral purity, which is required for efficient multiplication of the chirp pulse in order to avoid parasitic mixing effects. The largest spur is down over 40 dB. Note that the spikes at 5 GHz, 10 GHz, and 15 GHz are from the oscilloscope. The right panel is a schematic of the experimental setup.

Fig. 3
Fig. 3

The 10 GHz chirped pulses with gas (top of upper panel in blue) and the empty cell (EC - bottom of upper panel in red) that consists of five components. In the lower panel, the absorption signals (base 10) for MeOH and N2O are compared with the predictions from HITRAN and for EtOH and Ace with predictions from the JPL database. The insert shows the A- (71, ν12) ← A+ (72, ν12) absorption line of MeOH at 552.577 GHz and the predicted Voigt lineshape from HITRAN (ΔνG=1.20 MHz, ΔνL=0.53 MHz). The residuals are shown below the line (see text for details).

Fig. 4
Fig. 4

Measured FID spectrum of the five component gas mixture over a 10 GHz bandwidth. Predictions from HITRAN and JPL databases are shown inverted and below the measured spectrum. The simulated line intensities have been corrected according to Eq. (1). The insert shows a 45 MHz section containing the 110←101 transition of the H2 17O isotopologue at 552.020 GHz and the corresponding signal obtained when the cell was evacuated using a diffusion pump (EC). The parent isotopologue of this transition at 556.837 GHz is saturated (2773 times stronger) and not shown.

Fig. 5
Fig. 5

Timing diagram of the FID data analysis process.

Fig. 6
Fig. 6

The line shape of OCS near 546 GHz acquired using a chirped pulse with a duration of 250 ns and 50 MHz bandwidth at a total pressure of approximately 1.3 Pa (10 mTorr). The spectrum was acquired using 10 000 averages and a total acquisition time of 8 seconds. A plot of the squared magnitude of the Fourier transform (blue) is compared to the phase corrected squared imaginary part of the Fourier transform (black dots) and the Voigt fit to the imaginary component (red). The lower panel illustrates the fit residuals at the 0.5% level.

Fig. 7
Fig. 7

Noise properties of phase coherent detection.

Tables (1)

Tables Icon

Table 1 Summary of Multi-Component Gas Composition and Detection Sensitivities in Absorption (ABS NEC) and Emission (FID NEC) for a 7 Pa (53 mTorr) gas sample. Uncertainties are type B (k=1) and are shown for the least significant digit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A j = e [ 2 π Δ ν L Δ T + π 2 ln ( 2 ) Δ ν G 2 Δ T 2 ] Δ T = | ν F ν j | 1 R S R + Δ t F F T

Metrics