Abstract

Broadband white light is of great spectroscopic value and would be a powerful tool for nanoscale spectroscopy, however, generation and direction of white light on this length scale remains challenging. Here, we demonstrate the generation of broadband white light in sub-wavelength diameter Gallium Nitride (GaN) wires by coincident one- and two-photon absorption mediated via defect states. This generation of broadband, “white” light enables single-nanowire interferometric measurements of the nanowires themselves via analysis of the Fabry-Pérot fringes that overlay the entirety of the emission spectrum. The quality factor and finesse of individual nanowire cavities were measured and calculated to be 186 ± 88 and 3.05 ±0.6 respectively, averaged over 20 individual wires. This work presents a new, simple approach for the generation and direction of broad band white light at sub-diffraction limit length scales, ideal for translating classical white light spectroscopies to higher spatial resolutions then previously achieved.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media,” J. Nonlinear Opt. Phys. Mater. 8(1), 121–146 (1999).
    [CrossRef]
  3. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [CrossRef] [PubMed]
  4. P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
    [CrossRef]
  5. S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
    [CrossRef] [PubMed]
  6. P. J. Schuck, R. D. Grober, A. M. Roskowski, S. Einfeldt, and R. F. Davis, “Cross-sectional imaging of pendeo-epitaxial GaN using continuous-wave two-photon micro-photoluminescence,” Appl. Phys. Lett. 81(11), 1984–1986 (2002).
    [CrossRef]
  7. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
    [CrossRef]
  8. Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
    [CrossRef]
  9. Near band edge, Eg, of GaN ~3.1 eV (400 nm). This number is reduced from the strict band-edge value due to impurities and the exciton binding energy, ~20 meV,5 in GaN.
  10. Broad mid-gap state emission, centered at ~2.3 eV (540 nm), tapering off at ~1.2 eV (1 µm).
  11. T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
    [CrossRef] [PubMed]
  12. Laser line throughput experiments are performed ratiometrically. First, transmission is measured from a top objective (100x, 0.95 NA air, Nikon), through a standard 150 µm thick silica coverslip, and collected by a matching bottom objective and analyzed by spectrometer. Next, a GaN wire is aligned to the top objective via piezoelectric sample stage to maximize coupling and the bottom objective is aligned to the other end of the wire. The total counts collected through the GaN wire are corrected for differences in coupling between objective-objective and GaN-objective measurements.
  13. S. Gradečak, F. Qian, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
    [CrossRef]
  14. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
    [CrossRef]
  15. S. Ruhle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
    [CrossRef]
  16. D. P. Lyvers, J. M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
    [CrossRef]
  17. L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
    [CrossRef] [PubMed]
  18. R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
    [CrossRef] [PubMed]
  19. A. E. Siegman, Lasers (University Science Books, 1986).
  20. D. Kim, I. H. Libon, C. Voelkmann, Y. R. Shen, and V. Petrova-Koch, “Multiphoton photoluminescence from GaN with tunable picosecond pulses,” Phys. Rev. B 55(8), R4907–R4909 (1997).
    [CrossRef]
  21. J. W. P. Hsu, F. F. Schrey, and H. M. Ng, “Spatial distribution of yellow luminescence related deep levels in GaN,” Appl. Phys. Lett. 83(20), 4172–4174 (2003).
    [CrossRef]
  22. P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
    [CrossRef]
  23. S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
    [CrossRef]
  24. C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
    [CrossRef]
  25. The two photon absorption coeffecient, β, was measured and approximated by first measuring an approximate two photon absorption. This is performed by measuring the total intensity of excitation light (I0), and the total integrated intensity of the band edge emission (IPL) assuming an approximate collection efficiency of 0.3%. Only the band edge emission is considered in this calculation as it is clearly due to a full two-photon absorption effect and can be assigned unambiguously. We assume a quantum yield of 100% and from this can obtain the post absorption intensity (I). With this information we can obtain the two-photon absorption cross section (σ2) using the relation σ2 = (I-I0)/(I*I0*ρ*x) where ρ and x are density and path length respectively. σ2 is directly related to β by the relation β=(ρ*λ*σ2)/(h*c) where λ is the wavelength of light, h is Planck’s constant, and c is the speed of light.
  26. S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
    [CrossRef]
  27. J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
    [CrossRef]

2010 (1)

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

2009 (3)

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[CrossRef]

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[CrossRef] [PubMed]

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Ruhle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

D. P. Lyvers, J. M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

2006 (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

2005 (1)

S. Gradečak, F. Qian, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

2004 (1)

T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
[CrossRef] [PubMed]

2003 (3)

Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
[CrossRef]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[CrossRef]

J. W. P. Hsu, F. F. Schrey, and H. M. Ng, “Spatial distribution of yellow luminescence related deep levels in GaN,” Appl. Phys. Lett. 83(20), 4172–4174 (2003).
[CrossRef]

2002 (1)

P. J. Schuck, R. D. Grober, A. M. Roskowski, S. Einfeldt, and R. F. Davis, “Cross-sectional imaging of pendeo-epitaxial GaN using continuous-wave two-photon micro-photoluminescence,” Appl. Phys. Lett. 81(11), 1984–1986 (2002).
[CrossRef]

2000 (1)

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

1999 (2)

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media,” J. Nonlinear Opt. Phys. Mater. 8(1), 121–146 (1999).
[CrossRef]

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

1997 (3)

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
[CrossRef]

D. Kim, I. H. Libon, C. Voelkmann, Y. R. Shen, and V. Petrova-Koch, “Multiphoton photoluminescence from GaN with tunable picosecond pulses,” Phys. Rev. B 55(8), R4907–R4909 (1997).
[CrossRef]

1992 (1)

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[CrossRef] [PubMed]

Abid, M.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Agarwal, R.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[CrossRef] [PubMed]

Alnot, M.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Arakawa, Y.

Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
[CrossRef]

Aulombard, R. L.

S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
[CrossRef]

Baur, J.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Briot, O.

S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
[CrossRef]

Brodeur, A.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media,” J. Nonlinear Opt. Phys. Mater. 8(1), 121–146 (1999).
[CrossRef]

Casey, H. C.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Chen, Q.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Chen, T.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Chin, S. L.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media,” J. Nonlinear Opt. Phys. Mater. 8(1), 121–146 (1999).
[CrossRef]

Dai, L.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Davis, R. F.

P. J. Schuck, R. D. Grober, A. M. Roskowski, S. Einfeldt, and R. F. Davis, “Cross-sectional imaging of pendeo-epitaxial GaN using continuous-wave two-photon micro-photoluminescence,” Appl. Phys. Lett. 81(11), 1984–1986 (2002).
[CrossRef]

DenBaars, S. P.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Denlinger, J.

T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
[CrossRef] [PubMed]

Djebbour, Z.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Einfeldt, S.

P. J. Schuck, R. D. Grober, A. M. Roskowski, S. Einfeldt, and R. F. Davis, “Cross-sectional imaging of pendeo-epitaxial GaN using continuous-wave two-photon micro-photoluminescence,” Appl. Phys. Lett. 81(11), 1984–1986 (2002).
[CrossRef]

Ferguson, I. T.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Gautier, S.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Gilliot, P.

S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
[CrossRef]

Goldberger, J.

T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
[CrossRef] [PubMed]

Gradecak, S.

S. Gradečak, F. Qian, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

Grober, R. D.

P. J. Schuck, R. D. Grober, A. M. Roskowski, S. Einfeldt, and R. F. Davis, “Cross-sectional imaging of pendeo-epitaxial GaN using continuous-wave two-photon micro-photoluminescence,” Appl. Phys. Lett. 81(11), 1984–1986 (2002).
[CrossRef]

Guennani, D.

S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
[CrossRef]

Hielscher, Ch.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Hirao, K.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[CrossRef] [PubMed]

Hirlimann, C.

S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
[CrossRef]

Honerlage, B.

S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
[CrossRef]

Hoshino, K.

Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
[CrossRef]

Hsu, J. W. P.

J. W. P. Hsu, F. F. Schrey, and H. M. Ng, “Spatial distribution of yellow luminescence related deep levels in GaN,” Appl. Phys. Lett. 83(20), 4172–4174 (2003).
[CrossRef]

Johnson, J. C.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[CrossRef]

Jomard, F.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Kandidov, V. P.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media,” J. Nonlinear Opt. Phys. Mater. 8(1), 121–146 (1999).
[CrossRef]

Kao, F. J.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

Keizer, N. A.

S. Ruhle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Keller, B. P.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Keller, S.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

Kildishev, A. V.

D. P. Lyvers, J. M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[CrossRef]

Kim, D.

D. Kim, I. H. Libon, C. Voelkmann, Y. R. Shen, and V. Petrova-Koch, “Multiphoton photoluminescence from GaN with tunable picosecond pulses,” Phys. Rev. B 55(8), R4907–R4909 (1997).
[CrossRef]

Kolbas, R. M.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Kosareva, O. G.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media,” J. Nonlinear Opt. Phys. Mater. 8(1), 121–146 (1999).
[CrossRef]

Kuipers, L.

S. Ruhle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Kunzer, M.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Kuykendall, T.

T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
[CrossRef] [PubMed]

Lee, J. H.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Li, H. Y.

S. Ruhle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Li, Z.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Liang, J. C.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

Libon, I. H.

D. Kim, I. H. Libon, C. Voelkmann, Y. R. Shen, and V. Petrova-Koch, “Multiphoton photoluminescence from GaN with tunable picosecond pulses,” Phys. Rev. B 55(8), R4907–R4909 (1997).
[CrossRef]

Lieber, C. M.

S. Gradečak, F. Qian, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

Lipson, M.

Liu, S. F.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Lyvers, D. P.

D. P. Lyvers, J. M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[CrossRef]

Ma, R. M.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Mack, M. P.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

Maloufi, N.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Matsubara, T.

Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
[CrossRef]

Mishra, U.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

Mishra, U. K.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Moon, J. M.

D. P. Lyvers, J. M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[CrossRef]

Morita, R.

Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
[CrossRef]

Moudakir, T.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Muth, J. F.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Ng, H. M.

J. W. P. Hsu, F. F. Schrey, and H. M. Ng, “Spatial distribution of yellow luminescence related deep levels in GaN,” Appl. Phys. Lett. 83(20), 4172–4174 (2003).
[CrossRef]

Obloh, H.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Orsal, G.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Ougazzaden, A.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Pantzas, K.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Park, H. G.

S. Gradečak, F. Qian, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

Pauzauskie, P. J.

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
[CrossRef] [PubMed]

Petit, S.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media,” J. Nonlinear Opt. Phys. Mater. 8(1), 121–146 (1999).
[CrossRef]

S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
[CrossRef]

Petrova-Koch, V.

D. Kim, I. H. Libon, C. Voelkmann, Y. R. Shen, and V. Petrova-Koch, “Multiphoton photoluminescence from GaN with tunable picosecond pulses,” Phys. Rev. B 55(8), R4907–R4909 (1997).
[CrossRef]

Piccione, B.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[CrossRef] [PubMed]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Qian, F.

S. Gradečak, F. Qian, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

Qin, G. G.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Roskowski, A. M.

P. J. Schuck, R. D. Grober, A. M. Roskowski, S. Einfeldt, and R. F. Davis, “Cross-sectional imaging of pendeo-epitaxial GaN using continuous-wave two-photon micro-photoluminescence,” Appl. Phys. Lett. 81(11), 1984–1986 (2002).
[CrossRef]

Ruhle, S.

S. Ruhle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Saykally, R. J.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[CrossRef]

Schlotter, P.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Schmidt, R.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Schneider, J.

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

Schrey, F. F.

J. W. P. Hsu, F. F. Schrey, and H. M. Ng, “Spatial distribution of yellow luminescence related deep levels in GaN,” Appl. Phys. Lett. 83(20), 4172–4174 (2003).
[CrossRef]

Schuck, P. J.

P. J. Schuck, R. D. Grober, A. M. Roskowski, S. Einfeldt, and R. F. Davis, “Cross-sectional imaging of pendeo-epitaxial GaN using continuous-wave two-photon micro-photoluminescence,” Appl. Phys. Lett. 81(11), 1984–1986 (2002).
[CrossRef]

Shalaev, V. M.

D. P. Lyvers, J. M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[CrossRef]

Shen, Y. R.

D. Kim, I. H. Libon, C. Voelkmann, Y. R. Shen, and V. Petrova-Koch, “Multiphoton photoluminescence from GaN with tunable picosecond pulses,” Phys. Rev. B 55(8), R4907–R4909 (1997).
[CrossRef]

Shmagin, I. K.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Sirbuly, D.

T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
[CrossRef] [PubMed]

Sirenko, A. A.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Soga, N.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[CrossRef] [PubMed]

Someya, T.

Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
[CrossRef]

Spector, A. A.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[CrossRef] [PubMed]

Sun, C. K.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

Tanabe, S.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[CrossRef] [PubMed]

Toda, Y.

Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
[CrossRef]

Turner, A. C.

van Vugt, L. K.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[CrossRef] [PubMed]

S. Ruhle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Vanmaekelbergh, D.

S. Ruhle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Voelkmann, C.

D. Kim, I. H. Libon, C. Voelkmann, Y. R. Shen, and V. Petrova-Koch, “Multiphoton photoluminescence from GaN with tunable picosecond pulses,” Phys. Rev. B 55(8), R4907–R4909 (1997).
[CrossRef]

Voss, P. L.

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

Wang, J. C.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

Wei, A.

D. P. Lyvers, J. M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[CrossRef]

Wei, X. L.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Wu, J.

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[CrossRef]

Yamashita, M.

Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
[CrossRef]

Yan, H.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, P.

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
[CrossRef] [PubMed]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[CrossRef]

Yoshii, S.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[CrossRef] [PubMed]

Yue, S.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Zhang, B.

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[CrossRef] [PubMed]

Zhang, Y.

T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
[CrossRef] [PubMed]

ACS Nano (1)

D. P. Lyvers, J. M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2(12), 2569–2576 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

S. Gradečak, F. Qian, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

P. J. Schuck, R. D. Grober, A. M. Roskowski, S. Einfeldt, and R. F. Davis, “Cross-sectional imaging of pendeo-epitaxial GaN using continuous-wave two-photon micro-photoluminescence,” Appl. Phys. Lett. 81(11), 1984–1986 (2002).
[CrossRef]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa, “Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap,” Appl. Phys. Lett. 82(26), 4714–4718 (2003).
[CrossRef]

J. W. P. Hsu, F. F. Schrey, and H. M. Ng, “Spatial distribution of yellow luminescence related deep levels in GaN,” Appl. Phys. Lett. 83(20), 4172–4174 (2003).
[CrossRef]

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[CrossRef]

J. Cryst. Growth (1)

S. Gautier, G. Orsal, T. Moudakir, N. Maloufi, F. Jomard, M. Alnot, Z. Djebbour, A. A. Sirenko, M. Abid, K. Pantzas, I. T. Ferguson, P. L. Voss, and A. Ougazzaden, “Metal-organic vapour phase epitaxy of BInGaN quaternary alloys and characterization of boron content,” J. Cryst. Growth 312(5), 641–644 (2010).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media,” J. Nonlinear Opt. Phys. Mater. 8(1), 121–146 (1999).
[CrossRef]

J. Phys. Chem. B (1)

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[CrossRef]

Mater. Sci. Eng. B (2)

P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59(1-3), 390–394 (1999).
[CrossRef]

S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honerlage, O. Briot, and R. L. Aulombard, “Luminescence and absorption of GaN films under high excitation,” Mater. Sci. Eng. B 43(1-3), 196–200 (1997).
[CrossRef]

Mater. Today (1)

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

Nano Lett. (3)

S. Ruhle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

L. K. van Vugt, B. Zhang, B. Piccione, A. A. Spector, and R. Agarwal, “Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding,” Nano Lett. 9(4), 1684–1688 (2009).
[CrossRef] [PubMed]

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett. 9(7), 2697–2703 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3(8), 524–528 (2004).
[CrossRef] [PubMed]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

D. Kim, I. H. Libon, C. Voelkmann, Y. R. Shen, and V. Petrova-Koch, “Multiphoton photoluminescence from GaN with tunable picosecond pulses,” Phys. Rev. B 55(8), R4907–R4909 (1997).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[CrossRef] [PubMed]

Other (5)

Near band edge, Eg, of GaN ~3.1 eV (400 nm). This number is reduced from the strict band-edge value due to impurities and the exciton binding energy, ~20 meV,5 in GaN.

Broad mid-gap state emission, centered at ~2.3 eV (540 nm), tapering off at ~1.2 eV (1 µm).

Laser line throughput experiments are performed ratiometrically. First, transmission is measured from a top objective (100x, 0.95 NA air, Nikon), through a standard 150 µm thick silica coverslip, and collected by a matching bottom objective and analyzed by spectrometer. Next, a GaN wire is aligned to the top objective via piezoelectric sample stage to maximize coupling and the bottom objective is aligned to the other end of the wire. The total counts collected through the GaN wire are corrected for differences in coupling between objective-objective and GaN-objective measurements.

A. E. Siegman, Lasers (University Science Books, 1986).

The two photon absorption coeffecient, β, was measured and approximated by first measuring an approximate two photon absorption. This is performed by measuring the total intensity of excitation light (I0), and the total integrated intensity of the band edge emission (IPL) assuming an approximate collection efficiency of 0.3%. Only the band edge emission is considered in this calculation as it is clearly due to a full two-photon absorption effect and can be assigned unambiguously. We assume a quantum yield of 100% and from this can obtain the post absorption intensity (I). With this information we can obtain the two-photon absorption cross section (σ2) using the relation σ2 = (I-I0)/(I*I0*ρ*x) where ρ and x are density and path length respectively. σ2 is directly related to β by the relation β=(ρ*λ*σ2)/(h*c) where λ is the wavelength of light, h is Planck’s constant, and c is the speed of light.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Idealized schematic diagram of WL generation in a nanoscale waveguide (Bottom) via a two photon absorption followed by nonradiative decay to energetically broad mid-gap states and WL emission (Top).

Fig. 2
Fig. 2

Multi-photon confocal scanning emission image (a), SEM image of the corresponding wire (480 nm diameter) (b), and emission collected a the more corresponding wire (b), and emission collected a the more intense end facets of the wire (c). Fringes overlaying the emission spectrum are Fabry-Pérot etalons of the GaN wire cavity.

Fig. 3
Fig. 3

Photon order spectrum over full emission window (top) and WL spectrum (bottom) of the same wire (380 nm diameter) at full power excitation (38 mW). At bottom left and right are schematic diagrams of two photon absorption and population of the band edge, and one photon absorption with population of mid-gap states, respectively.

Fig. 4
Fig. 4

Emission spectrum and color distribution of GaN nanowires. a) PL from an individual wire (460 nm diameter) under visible (532 nm, red, excitation wavelength shown in green) and UV (349 nm, black, excitation wavelength shown schematically in blue) excitation. Inset are wide field images of these wires under UV and visible excitation (i and ii respectively). Spectra have been smoothed for clarity. b) Representative color distribution of GaN wires on CIE 1931 colorimetry plot. Absolute white (1), GaN emission under 532 nm illumination (2), and under 349 nm illumination color points are shown. In addition several point over the emission spectrum are plotted to show complete visual spectral coverage (4).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q = F λ r Δ λ
F = Δ λ δ λ
R = 1 + 2 Sin ( π 2 F ) 2 1 2 4 + ( 2 4 Sin ( π 2 F ) 2 ) 2

Metrics