Abstract

50 fs - 12 ps laser pulses are employed to ablate aluminum, copper, iron, and graphite targets. The ablation-generated momentum is measured with a torsion pendulum. Corresponding time-resolved shadowgraphic measurements show that the ablation process at the optimal laser fluence achieving the maximal momentum is primarily dominated by the photomechanical mechanism. When laser pulses with specific laser fluence are used and the pulse duration is tuned from 50 fs to 12 ps, the generated momentum firstly increases and then remains almost constant, which could be attributed to the change of the ablation mechanism involved from atomization to phase explosion. The investigation of the ablation-generated momentum also reveals a nonlinear momentum-energy conversion scaling law, namely, as the pulse energy increases, the momentum obtained by the target increases nonlinearly. This may be caused by the effective reduction of the dissipated energy into the surrounding of the ablation zone as the pulse energy increases, which indicates that for femtosecond laser the dissipated energy into the surrounding target is still significant.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
    [CrossRef]
  2. T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, “Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 15(1), 91–98 (1994).
    [CrossRef] [PubMed]
  3. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62(19), 13167–13173 (2000).
    [CrossRef]
  4. R. Tommasini, K. Eidmann, T. Kawachi, and E. E. Fill, “Preplasma conditions for operation of 10-Hz subjoule femtosecond-laser-pumped nickel-likex-ray lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 2), 066404 (2004).
    [CrossRef] [PubMed]
  5. N. Zhang, Y. B. Zhao, and X. N. Zhu, “Light propulsion of microbeads with femtosecond laser pulses,” Opt. Express 12(15), 3590–3598 (2004).
    [CrossRef] [PubMed]
  6. Y. A. Rezunkov, “Investigations of propelling of objects by light: review of Russian studies on laser propulsion,” in Proceedings of AIP Conference on Beamed Energy Propulsion 766 (AIP, 2005), pp. 46–57.
  7. A. Kantrowitz, “Propulsion to orbit by ground-based lasers,” Astronaut. Aeronaut. 10, 74–76 (1972).
  8. C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, “Measurements of laser impulse coupling at 130fs,” Proc. SPIE 5448, 1201–1209 (2004).
    [CrossRef]
  9. A. V. Pakhomov, M. S. Thompson, and D. A. Gregory, “Ablative laser propulsion: a study of specific impulse, thrust and efficiency,” in Proceedings of AIP Conference on Beamed Energy Propulsion 664 (AIP, 2003), pp. 194–205.
  10. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
    [CrossRef] [PubMed]
  11. A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
    [CrossRef]
  12. J. Fang, J. Xing, J. Ye, G. Wang, and T. Zhou, “A calculation method of micro-impulse with torsion pendulum,” Dev. Innov. Mach. Electr. Prod. 20, 17–18 (2007) (in Chinese).
  13. C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
    [CrossRef]
  14. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [CrossRef] [PubMed]
  15. V. P. Skripov, Metastable Liquids (Halsted Press, 1974).
  16. N. Zhang, Physical mechanisms of ultrashort laser pulses ablation of solid targets and its applications in laser propulsion (Doctoral thesis, Nankai University, Tianjin, China, 2007) (in Chinese).
  17. K. Dreisewerd, M. Schurenberg, M. Karas, and F. Hillenkamp, “Matrix-assisted laser desorption/ionization with nitrogen lasers of different pulse widths,” Int. J. Mass Spectrom. Ion Process. 154(3), 171–178 (1996).
    [CrossRef]
  18. Y. G. Yingling, P. F. Conforti, and B. J. Garrison, “Theoretical investigation of laser pulse width dependence in a thermal confinement regime,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 757–759 (2004).
  19. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
    [CrossRef] [PubMed]

2007 (2)

J. Fang, J. Xing, J. Ye, G. Wang, and T. Zhou, “A calculation method of micro-impulse with torsion pendulum,” Dev. Innov. Mach. Electr. Prod. 20, 17–18 (2007) (in Chinese).

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

2005 (1)

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[CrossRef]

2004 (4)

R. Tommasini, K. Eidmann, T. Kawachi, and E. E. Fill, “Preplasma conditions for operation of 10-Hz subjoule femtosecond-laser-pumped nickel-likex-ray lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 2), 066404 (2004).
[CrossRef] [PubMed]

N. Zhang, Y. B. Zhao, and X. N. Zhu, “Light propulsion of microbeads with femtosecond laser pulses,” Opt. Express 12(15), 3590–3598 (2004).
[CrossRef] [PubMed]

Y. G. Yingling, P. F. Conforti, and B. J. Garrison, “Theoretical investigation of laser pulse width dependence in a thermal confinement regime,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 757–759 (2004).

C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, “Measurements of laser impulse coupling at 130fs,” Proc. SPIE 5448, 1201–1209 (2004).
[CrossRef]

2003 (2)

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[CrossRef] [PubMed]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

2002 (1)

C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
[CrossRef]

2000 (1)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62(19), 13167–13173 (2000).
[CrossRef]

1996 (1)

K. Dreisewerd, M. Schurenberg, M. Karas, and F. Hillenkamp, “Matrix-assisted laser desorption/ionization with nitrogen lasers of different pulse widths,” Int. J. Mass Spectrom. Ion Process. 154(3), 171–178 (1996).
[CrossRef]

1995 (1)

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[CrossRef]

1994 (1)

T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, “Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 15(1), 91–98 (1994).
[CrossRef] [PubMed]

1972 (1)

A. Kantrowitz, “Propulsion to orbit by ground-based lasers,” Astronaut. Aeronaut. 10, 74–76 (1972).

Amoruso, S.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[CrossRef]

Ashkenasi, D.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62(19), 13167–13173 (2000).
[CrossRef]

Ausanio, G.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[CrossRef]

Bor, Z.

T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, “Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 15(1), 91–98 (1994).
[CrossRef] [PubMed]

Bruzzese, R.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[CrossRef]

Campbell, E. E. B.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62(19), 13167–13173 (2000).
[CrossRef]

Conforti, P. F.

Y. G. Yingling, P. F. Conforti, and B. J. Garrison, “Theoretical investigation of laser pulse width dependence in a thermal confinement regime,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 757–759 (2004).

Dreisewerd, K.

K. Dreisewerd, M. Schurenberg, M. Karas, and F. Hillenkamp, “Matrix-assisted laser desorption/ionization with nitrogen lasers of different pulse widths,” Int. J. Mass Spectrom. Ion Process. 154(3), 171–178 (1996).
[CrossRef]

Dyer, P. E.

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

Eidmann, K.

R. Tommasini, K. Eidmann, T. Kawachi, and E. E. Fill, “Preplasma conditions for operation of 10-Hz subjoule femtosecond-laser-pumped nickel-likex-ray lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 2), 066404 (2004).
[CrossRef] [PubMed]

Fang, J.

J. Fang, J. Xing, J. Ye, G. Wang, and T. Zhou, “A calculation method of micro-impulse with torsion pendulum,” Dev. Innov. Mach. Electr. Prod. 20, 17–18 (2007) (in Chinese).

Fill, E. E.

R. Tommasini, K. Eidmann, T. Kawachi, and E. E. Fill, “Preplasma conditions for operation of 10-Hz subjoule femtosecond-laser-pumped nickel-likex-ray lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 2), 066404 (2004).
[CrossRef] [PubMed]

Funk, D.

C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, “Measurements of laser impulse coupling at 130fs,” Proc. SPIE 5448, 1201–1209 (2004).
[CrossRef]

Garrison, B. J.

Y. G. Yingling, P. F. Conforti, and B. J. Garrison, “Theoretical investigation of laser pulse width dependence in a thermal confinement regime,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 757–759 (2004).

Glownia, J.

C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, “Measurements of laser impulse coupling at 130fs,” Proc. SPIE 5448, 1201–1209 (2004).
[CrossRef]

Hillenkamp, F.

K. Dreisewerd, M. Schurenberg, M. Karas, and F. Hillenkamp, “Matrix-assisted laser desorption/ionization with nitrogen lasers of different pulse widths,” Int. J. Mass Spectrom. Ion Process. 154(3), 171–178 (1996).
[CrossRef]

Hu, X. H.

T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, “Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 15(1), 91–98 (1994).
[CrossRef] [PubMed]

Juhasz, T.

T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, “Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 15(1), 91–98 (1994).
[CrossRef] [PubMed]

Kantrowitz, A.

A. Kantrowitz, “Propulsion to orbit by ground-based lasers,” Astronaut. Aeronaut. 10, 74–76 (1972).

Karas, M.

K. Dreisewerd, M. Schurenberg, M. Karas, and F. Hillenkamp, “Matrix-assisted laser desorption/ionization with nitrogen lasers of different pulse widths,” Int. J. Mass Spectrom. Ion Process. 154(3), 171–178 (1996).
[CrossRef]

Kawachi, T.

R. Tommasini, K. Eidmann, T. Kawachi, and E. E. Fill, “Preplasma conditions for operation of 10-Hz subjoule femtosecond-laser-pumped nickel-likex-ray lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 2), 066404 (2004).
[CrossRef] [PubMed]

Kelly, R.

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[CrossRef]

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[CrossRef] [PubMed]

Lippert, T.

C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, “Measurements of laser impulse coupling at 130fs,” Proc. SPIE 5448, 1201–1209 (2004).
[CrossRef]

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[CrossRef] [PubMed]

Luke, J.

C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, “Measurements of laser impulse coupling at 130fs,” Proc. SPIE 5448, 1201–1209 (2004).
[CrossRef]

C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
[CrossRef]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[CrossRef] [PubMed]

Miotello, A.

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[CrossRef]

Moore, D.

C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, “Measurements of laser impulse coupling at 130fs,” Proc. SPIE 5448, 1201–1209 (2004).
[CrossRef]

Paltauf, G.

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

Phipps, C.

C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, “Measurements of laser impulse coupling at 130fs,” Proc. SPIE 5448, 1201–1209 (2004).
[CrossRef]

C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
[CrossRef]

Rosenfeld, A.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62(19), 13167–13173 (2000).
[CrossRef]

Schurenberg, M.

K. Dreisewerd, M. Schurenberg, M. Karas, and F. Hillenkamp, “Matrix-assisted laser desorption/ionization with nitrogen lasers of different pulse widths,” Int. J. Mass Spectrom. Ion Process. 154(3), 171–178 (1996).
[CrossRef]

Stoian, R.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62(19), 13167–13173 (2000).
[CrossRef]

Tommasini, R.

R. Tommasini, K. Eidmann, T. Kawachi, and E. E. Fill, “Preplasma conditions for operation of 10-Hz subjoule femtosecond-laser-pumped nickel-likex-ray lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 2), 066404 (2004).
[CrossRef] [PubMed]

Turi, L.

T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, “Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 15(1), 91–98 (1994).
[CrossRef] [PubMed]

Vitiello, M.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[CrossRef]

Wang, G.

J. Fang, J. Xing, J. Ye, G. Wang, and T. Zhou, “A calculation method of micro-impulse with torsion pendulum,” Dev. Innov. Mach. Electr. Prod. 20, 17–18 (2007) (in Chinese).

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Wang, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[CrossRef]

Xing, J.

J. Fang, J. Xing, J. Ye, G. Wang, and T. Zhou, “A calculation method of micro-impulse with torsion pendulum,” Dev. Innov. Mach. Electr. Prod. 20, 17–18 (2007) (in Chinese).

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Ye, J.

J. Fang, J. Xing, J. Ye, G. Wang, and T. Zhou, “A calculation method of micro-impulse with torsion pendulum,” Dev. Innov. Mach. Electr. Prod. 20, 17–18 (2007) (in Chinese).

Yingling, Y. G.

Y. G. Yingling, P. F. Conforti, and B. J. Garrison, “Theoretical investigation of laser pulse width dependence in a thermal confinement regime,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 757–759 (2004).

Zhang, N.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

N. Zhang, Y. B. Zhao, and X. N. Zhu, “Light propulsion of microbeads with femtosecond laser pulses,” Opt. Express 12(15), 3590–3598 (2004).
[CrossRef] [PubMed]

Zhao, Y. B.

Zhou, T.

J. Fang, J. Xing, J. Ye, G. Wang, and T. Zhou, “A calculation method of micro-impulse with torsion pendulum,” Dev. Innov. Mach. Electr. Prod. 20, 17–18 (2007) (in Chinese).

Zhu, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Zhu, X. N.

AIAA J. (1)

C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Y. G. Yingling, P. F. Conforti, and B. J. Garrison, “Theoretical investigation of laser pulse width dependence in a thermal confinement regime,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 757–759 (2004).

Astronaut. Aeronaut. (1)

A. Kantrowitz, “Propulsion to orbit by ground-based lasers,” Astronaut. Aeronaut. 10, 74–76 (1972).

Chem. Rev. (1)

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

Dev. Innov. Mach. Electr. Prod. (1)

J. Fang, J. Xing, J. Ye, G. Wang, and T. Zhou, “A calculation method of micro-impulse with torsion pendulum,” Dev. Innov. Mach. Electr. Prod. 20, 17–18 (2007) (in Chinese).

Int. J. Mass Spectrom. Ion Process. (1)

K. Dreisewerd, M. Schurenberg, M. Karas, and F. Hillenkamp, “Matrix-assisted laser desorption/ionization with nitrogen lasers of different pulse widths,” Int. J. Mass Spectrom. Ion Process. 154(3), 171–178 (1996).
[CrossRef]

Lasers Surg. Med. (1)

T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, “Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 15(1), 91–98 (1994).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62(19), 13167–13173 (2000).
[CrossRef]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. Tommasini, K. Eidmann, T. Kawachi, and E. E. Fill, “Preplasma conditions for operation of 10-Hz subjoule femtosecond-laser-pumped nickel-likex-ray lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 2), 066404 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[CrossRef] [PubMed]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, “Measurements of laser impulse coupling at 130fs,” Proc. SPIE 5448, 1201–1209 (2004).
[CrossRef]

Other (4)

A. V. Pakhomov, M. S. Thompson, and D. A. Gregory, “Ablative laser propulsion: a study of specific impulse, thrust and efficiency,” in Proceedings of AIP Conference on Beamed Energy Propulsion 664 (AIP, 2003), pp. 194–205.

Y. A. Rezunkov, “Investigations of propelling of objects by light: review of Russian studies on laser propulsion,” in Proceedings of AIP Conference on Beamed Energy Propulsion 766 (AIP, 2005), pp. 46–57.

V. P. Skripov, Metastable Liquids (Halsted Press, 1974).

N. Zhang, Physical mechanisms of ultrashort laser pulses ablation of solid targets and its applications in laser propulsion (Doctoral thesis, Nankai University, Tianjin, China, 2007) (in Chinese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup for the momentum measurement with a torsion pendulum; (b) side view of the optical layout for the ultrashort pulse laser ablation of the target mounted at one end of the pendulum.

Fig. 2
Fig. 2

Dependence of the momentum coupling coefficient on the laser fluence for a copper target ablated by 1.1 mJ, 50 fs laser pulses focused by a 100 mm focal length lens. 1 dyne = 10−5 N.

Fig. 3
Fig. 3

Time-resolved shadowgraphs of material ejection recorded at the indicated time delays after a copper target is ablated by 1.1 mJ, 50 fs laser pulses. For each time delay, the target that is placed at the geometrical focus of the 100 mm focal length lens is moved to a fresh spot and only one pulse is fired. The horizontal solid arrow in the shadowgraph of 1 ns time delay indicates the laser pulse propagation direction. The narrow channel in front of the target is generated due to the laser-induced air ionization. Frame size: 320 μm × 240 μm.

Fig. 4
Fig. 4

Time-resolved shadowgraphs of material ejection recorded at the indicated time delays after a copper target is ablated by 1.1 mJ, 50 fs laser pulses. The target is placed at the position where the optimal laser fluence exists. The solid arrow in the shadowgraph of 0 ns time delay indicates the laser pulse propagation direction. Frame size: 620 μm × 460 μm.

Fig. 5
Fig. 5

Dependence of the ablation plume velocity normal to the target surface on the delay time. Hollow squares present the case that the copper target is placed at the focus of the focal lens, and solid circles present the case that the copper target locates at the position where the optimal laser fluence exists.

Fig. 6
Fig. 6

(a) Dependence of the momentum coupling coefficient on the laser pulse width when 1.1 mJ laser pulses are used to ablate aluminum (solid squares), graphite (solid circles), copper (solid triangles), and iron (solid inverse triangles) targets. All targets are placed at the geometrical focus of the 100 mm focal length lens; (b) enlarged view of the data points for iron target with laser pulse duration less than 2 ps.

Fig. 7
Fig. 7

(a) Dependence of the laser ablation-generated momentum on the laser fluence for 400 fs laser pulses ablating the aluminum target with single pulse energies of 30 mJ, 50 mJ, 70 mJ, and 90 mJ respectively; (b) dependence of the laser ablation-generated momentum on the laser pulse energy for 400 fs laser pulses ablating the aluminum target at laser fluences of 0.2 J/cm2 (solid squares), 0.6 J/cm2 (solid circles), 2 J/cm2 (solid triangles), and 4 J/cm2 (solid inverse triangles).

Metrics