Abstract

An electrically controlled ultra-compact surface plasmon polariton absorption modulator (SPPAM) is proposed. The device can be as small as a few micrometers depending on the required extinction ratio and the acceptable loss. The device allows for operation far beyond 100 Gbit / s, being only limited by RC time constants. The absorption modulator comprises a stack of metal / insulator / metal-oxide / metal layers, which support a strongly confined asymmetric surface plasmon polariton (SPP) in the 1.55 μm telecommunication wavelength window. Absorption modulation is achieved by electrically modulating the free carrier density in the intermediate metal-oxide layer. The concept is supported by proof-of-principle experiments.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, “Very-low-driving-voltage electroabsorption modulators operating at 40 Gb/s,” J. Lightwave Technol. 24(5), 2219–2224 (2006).
    [CrossRef]
  2. Y. Chiu, S. Z. Zhang, V. Kaman, J. Piprek, and J. E. Bowers, “High-speed traveling-wave electro-absorption modulators,” Proc. SPIE 4490, 1–10 (2001).
    [CrossRef]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  4. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [CrossRef]
  5. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
    [CrossRef]
  6. L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “Silicon high-speed electro-optic modulator,” in Group IV Photonics, p. ThC2 (2010).
  7. W. Freude, J. Leuthold, L. Alloatti, T. Vallaitis, D. Korn, R. Palmer, C. Koos, J. Brosi, P. Dumon, R. Baets, M. Scimeca, I. Biaggio, B. Breiten, F. Diederich, A. Barklund, R. Dinu, and J. Wieland, “100 Gbit / s electro-optic modulator and 56 Gbit/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology,” in Photonics Society Summer Topical Meeting Series, 2010 IEEE, pp. 96–97 (2010).
  8. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  9. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmonpolariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
    [CrossRef]
  10. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  11. S.-I. Inoue and S. Yokoyama, “Numerical simulation of ultra-compact electro-optic modulator based on nanoscale plasmon metal gap waveguides,” Electron. Lett. 45(21), 1087–1089 (2009).
    [CrossRef]
  12. C. Jung, S. Yee, and K. Kuhn, “Electro-optic polymer light modulator based on surface plasmon resonance,” Appl. Opt. 34(6), 946–949 (1995).
    [CrossRef] [PubMed]
  13. C. Jung, S. Yee, and K. Kuhn, “Integrated optics waveguide modulator based on surface plasmon resonance,” J. Lightwave Technol. 12(10), 1802–1806 (1994).
    [CrossRef]
  14. W.-K. Kuo and M.-T. Chen, “Simulation study of surface-plasmon-resonance electro-optic light modulator based on a polymer grating coupler,” Opt. Lett. 34(24), 3812–3814 (2009).
    [CrossRef] [PubMed]
  15. Z. Wu, R. L. Nelson, J. W. Haus, and Q. Zhan, “Plasmonic electro-optic modulator design using a resonant metal grating,” Opt. Lett. 33(6), 551–553 (2008).
    [CrossRef] [PubMed]
  16. J. S. Schildkraut, “Long-range surface plasmon electrooptic modulator,” Appl. Opt. 27(21), 4587–4590 (1988).
    [CrossRef] [PubMed]
  17. O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61(21), 2500–2502 (1992).
    [CrossRef]
  18. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
    [CrossRef] [PubMed]
  19. A. Melikyan, T. Vallaitis, N. Lindenmann, T. Schimmel, W. Freude, and J. Leuthold, “A surface plasmon polariton absorption modulator,” in Conference on Lasers and Electro-Optics, p. JThE77 (2010).
  20. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [CrossRef] [PubMed]
  21. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
    [CrossRef] [PubMed]
  22. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]
  23. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20227–20240 (2008).
    [CrossRef] [PubMed]
  24. F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
    [CrossRef]
  25. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm,” Opt. Lett. 34(6), 839–841 (2009).
    [CrossRef] [PubMed]
  26. S. Dasgupta, M. Lukas, K. Dössel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80(8), 085425 (2009).
    [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  28. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
    [CrossRef]
  29. H. S. Kwok, X. W. Sun, and D. H. Kim, “Pulsed laser deposited crystalline ultrathin indium tin oxide films and their conduction mechanisms,” Thin Solid Films 335(1-2), 299–302 (1998).
    [CrossRef]

2010

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

2009

S. Dasgupta, M. Lukas, K. Dössel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80(8), 085425 (2009).
[CrossRef]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

S.-I. Inoue and S. Yokoyama, “Numerical simulation of ultra-compact electro-optic modulator based on nanoscale plasmon metal gap waveguides,” Electron. Lett. 45(21), 1087–1089 (2009).
[CrossRef]

F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm,” Opt. Lett. 34(6), 839–841 (2009).
[CrossRef] [PubMed]

W.-K. Kuo and M.-T. Chen, “Simulation study of surface-plasmon-resonance electro-optic light modulator based on a polymer grating coupler,” Opt. Lett. 34(24), 3812–3814 (2009).
[CrossRef] [PubMed]

2008

Z. Wu, R. L. Nelson, J. W. Haus, and Q. Zhan, “Plasmonic electro-optic modulator design using a resonant metal grating,” Opt. Lett. 33(6), 551–553 (2008).
[CrossRef] [PubMed]

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20227–20240 (2008).
[CrossRef] [PubMed]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[CrossRef]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

2007

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[CrossRef]

2006

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmonpolariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

2001

Y. Chiu, S. Z. Zhang, V. Kaman, J. Piprek, and J. E. Bowers, “High-speed traveling-wave electro-absorption modulators,” Proc. SPIE 4490, 1–10 (2001).
[CrossRef]

1998

H. S. Kwok, X. W. Sun, and D. H. Kim, “Pulsed laser deposited crystalline ultrathin indium tin oxide films and their conduction mechanisms,” Thin Solid Films 335(1-2), 299–302 (1998).
[CrossRef]

1995

1994

C. Jung, S. Yee, and K. Kuhn, “Integrated optics waveguide modulator based on surface plasmon resonance,” J. Lightwave Technol. 12(10), 1802–1806 (1994).
[CrossRef]

1992

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61(21), 2500–2502 (1992).
[CrossRef]

1991

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

1988

1986

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Aspnes, D. E.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[CrossRef]

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Bloom, D. M.

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61(21), 2500–2502 (1992).
[CrossRef]

Bowers, J. E.

Y. Chiu, S. Z. Zhang, V. Kaman, J. Piprek, and J. E. Bowers, “High-speed traveling-wave electro-absorption modulators,” Proc. SPIE 4490, 1–10 (2001).
[CrossRef]

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmonpolariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Cerruti, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[CrossRef]

Chen, M.-T.

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Chiu, Y.

Y. Chiu, S. Z. Zhang, V. Kaman, J. Piprek, and J. E. Bowers, “High-speed traveling-wave electro-absorption modulators,” Proc. SPIE 4490, 1–10 (2001).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Danz, N.

Dasgupta, S.

S. Dasgupta, M. Lukas, K. Dössel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80(8), 085425 (2009).
[CrossRef]

Descrovi, E.

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dominici, L.

Dössel, K.

S. Dasgupta, M. Lukas, K. Dössel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80(8), 085425 (2009).
[CrossRef]

Efremenko, A.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[CrossRef]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

Franzen, S.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[CrossRef]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Fukano, H.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Genenko, Y. A.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[CrossRef]

Hahn, H.

S. Dasgupta, M. Lukas, K. Dössel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80(8), 085425 (2009).
[CrossRef]

Haus, J. W.

Ho, F.

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61(21), 2500–2502 (1992).
[CrossRef]

Inoue, S.-I.

S.-I. Inoue and S. Yokoyama, “Numerical simulation of ultra-compact electro-optic modulator based on nanoscale plasmon metal gap waveguides,” Electron. Lett. 45(21), 1087–1089 (2009).
[CrossRef]

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jung, C.

C. Jung, S. Yee, and K. Kuhn, “Electro-optic polymer light modulator based on surface plasmon resonance,” Appl. Opt. 34(6), 946–949 (1995).
[CrossRef] [PubMed]

C. Jung, S. Yee, and K. Kuhn, “Integrated optics waveguide modulator based on surface plasmon resonance,” J. Lightwave Technol. 12(10), 1802–1806 (1994).
[CrossRef]

Kaman, V.

Y. Chiu, S. Z. Zhang, V. Kaman, J. Piprek, and J. E. Bowers, “High-speed traveling-wave electro-absorption modulators,” Proc. SPIE 4490, 1–10 (2001).
[CrossRef]

Kats, A. V.

Kim, D. H.

H. S. Kwok, X. W. Sun, and D. H. Kim, “Pulsed laser deposited crystalline ultrathin indium tin oxide films and their conduction mechanisms,” Thin Solid Films 335(1-2), 299–302 (1998).
[CrossRef]

Kondo, Y.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Kruk, R.

S. Dasgupta, M. Lukas, K. Dössel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80(8), 085425 (2009).
[CrossRef]

Kuhn, K.

C. Jung, S. Yee, and K. Kuhn, “Electro-optic polymer light modulator based on surface plasmon resonance,” Appl. Opt. 34(6), 946–949 (1995).
[CrossRef] [PubMed]

C. Jung, S. Yee, and K. Kuhn, “Integrated optics waveguide modulator based on surface plasmon resonance,” J. Lightwave Technol. 12(10), 1802–1806 (1994).
[CrossRef]

Kuo, W.-K.

Kwok, H. S.

H. S. Kwok, X. W. Sun, and D. H. Kim, “Pulsed laser deposited crystalline ultrathin indium tin oxide films and their conduction mechanisms,” Thin Solid Films 335(1-2), 299–302 (1998).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmonpolariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Losego, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[CrossRef]

Lukas, M.

S. Dasgupta, M. Lukas, K. Dössel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80(8), 085425 (2009).
[CrossRef]

Maria, J.-P.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[CrossRef]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Melzer, C.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[CrossRef]

Menchini, F.

Michelotti, F.

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Nelson, R. L.

Nesterov, M. L.

Neumann, F.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[CrossRef]

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmonpolariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Piprek, J.

Y. Chiu, S. Z. Zhang, V. Kaman, J. Piprek, and J. E. Bowers, “High-speed traveling-wave electro-absorption modulators,” Proc. SPIE 4490, 1–10 (2001).
[CrossRef]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Rhodes, C.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[CrossRef]

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Schildkraut, J. S.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Solgaard, O.

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61(21), 2500–2502 (1992).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Sun, X. W.

H. S. Kwok, X. W. Sun, and D. H. Kim, “Pulsed laser deposited crystalline ultrathin indium tin oxide films and their conduction mechanisms,” Thin Solid Films 335(1-2), 299–302 (1998).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Tamura, M.

Thackara, J. I.

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61(21), 2500–2502 (1992).
[CrossRef]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Turitsyn, S. K.

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

von Seggern, H.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[CrossRef]

Wu, Z.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yamanaka, T.

Yampolskii, S. V.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[CrossRef]

Yee, S.

C. Jung, S. Yee, and K. Kuhn, “Electro-optic polymer light modulator based on surface plasmon resonance,” Appl. Opt. 34(6), 946–949 (1995).
[CrossRef] [PubMed]

C. Jung, S. Yee, and K. Kuhn, “Integrated optics waveguide modulator based on surface plasmon resonance,” J. Lightwave Technol. 12(10), 1802–1806 (1994).
[CrossRef]

Yokoyama, S.

S.-I. Inoue and S. Yokoyama, “Numerical simulation of ultra-compact electro-optic modulator based on nanoscale plasmon metal gap waveguides,” Electron. Lett. 45(21), 1087–1089 (2009).
[CrossRef]

Zhan, Q.

Zhang, S. Z.

Y. Chiu, S. Z. Zhang, V. Kaman, J. Piprek, and J. E. Bowers, “High-speed traveling-wave electro-absorption modulators,” Proc. SPIE 4490, 1–10 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmonpolariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61(21), 2500–2502 (1992).
[CrossRef]

Electron. Lett.

S.-I. Inoue and S. Yokoyama, “Numerical simulation of ultra-compact electro-optic modulator based on nanoscale plasmon metal gap waveguides,” Electron. Lett. 45(21), 1087–1089 (2009).
[CrossRef]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit / s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

J. Appl. Phys.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[CrossRef]

J. Lightwave Technol.

H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, “Very-low-driving-voltage electroabsorption modulators operating at 40 Gb/s,” J. Lightwave Technol. 24(5), 2219–2224 (2006).
[CrossRef]

C. Jung, S. Yee, and K. Kuhn, “Integrated optics waveguide modulator based on surface plasmon resonance,” J. Lightwave Technol. 12(10), 1802–1806 (1994).
[CrossRef]

Nano Lett.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Nat. Photonics

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[CrossRef]

S. Dasgupta, M. Lukas, K. Dössel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80(8), 085425 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. B Condens. Matter

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Proc. SPIE

Y. Chiu, S. Z. Zhang, V. Kaman, J. Piprek, and J. E. Bowers, “High-speed traveling-wave electro-absorption modulators,” Proc. SPIE 4490, 1–10 (2001).
[CrossRef]

Thin Solid Films

H. S. Kwok, X. W. Sun, and D. H. Kim, “Pulsed laser deposited crystalline ultrathin indium tin oxide films and their conduction mechanisms,” Thin Solid Films 335(1-2), 299–302 (1998).
[CrossRef]

Other

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “Silicon high-speed electro-optic modulator,” in Group IV Photonics, p. ThC2 (2010).

W. Freude, J. Leuthold, L. Alloatti, T. Vallaitis, D. Korn, R. Palmer, C. Koos, J. Brosi, P. Dumon, R. Baets, M. Scimeca, I. Biaggio, B. Breiten, F. Diederich, A. Barklund, R. Dinu, and J. Wieland, “100 Gbit / s electro-optic modulator and 56 Gbit/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology,” in Photonics Society Summer Topical Meeting Series, 2010 IEEE, pp. 96–97 (2010).

A. Melikyan, T. Vallaitis, N. Lindenmann, T. Schimmel, W. Freude, and J. Leuthold, “A surface plasmon polariton absorption modulator,” in Conference on Lasers and Electro-Optics, p. JThE77 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The structure of a surface plasmon polariton absorption modulator (SPPAM). Light is coupled from a silicon nanowire into an active plasmonic section by means of a directional coupler. The active section consists of a stack of silver (Ag), indium tin oxide (ITO), and SiO2 layers. The absorption coefficient of the SPP is modulated by applying a voltage between the two silver electrodes. The insets show how a photonic mode (a) in a silicon strip waveguide excites a SPP (c) via a hybrid mode (b) in directional coupler. The insets in (d) show the electric field E y and the magnetic field H x as well as the time-averaged Poynting vector distributions S z = Re { E × H } / 2 in the active plasmonic part. The plot of the Poynting vector shows the power confinement of the SPP in the ITO layer. The length L describes the size of the modulator along the light propagation direction.

Fig. 2
Fig. 2

Plasmonic structure with metal/dielectric/metal-oxide/metal layers. (a) Geometry and (b) dielectric permittivity distribution. The H x component of the SPP magnetic field is schematically shown as a contour filled with reddish color in (a). The SPP propagates along the positive z-direction. (c) Carrier density distributions N i ( y ) in both electrodes

Fig. 3
Fig. 3

Dispersion relation of SPP guided by the Ag/ITO(8nm)/Si3N4(70nm)/Ag layer stack. Both, propagation constant and absorption coefficient, change when the carrier density of ITO is increased by 5% (red lines). As opposed to the propagation constant the absorption coefficient varies significantly with ITO carrier density.

Fig. 4
Fig. 4

Dependence of characteristic device parameters as a function of the thickness d of the dielectric for two dielectric materials (Si3N4, SiO2,) and for ITO thicknesses h = 8 nm (black line), 10 nm (red line) and 15 nm (blue line). (a) Propagation constant β . A typical propagation constant achievable in a silicon nanowire (500 nm × 500 nm) waveguide is shown as a horizontal green line. Therefore, an SPP excitation via a directional coupler is easily possible for a SiO2 dielectric, but a grating coupler is preferable for a Si3N4 dielectric. (b) Propagation length L e. Increasing the refractive index of the dielectric results in a decrease of L e. The inset shows the absolute value of the time-averaged Poynting vector distributions in the structures filled with Si3N4 (blue line) and SiO2 (red line). It can be seen that that the power confinement in ITO is larger than in the case of Si3N4. (c) Dependence of 1dB on-off length L 1dB . It can be seen that L 1dB is dramatically decreasing with the thickness of the dielectric, which is a result of both the static and the optical electrical field enhancement in the structure. The larger refractive index of the Si3N4 gives rise to a stronger optical field confinement in the active ITO layer, which in turn results in a shorter 1dB on-off length as well as shorter propagation length. (d) Figure of merit (FoM) as a function of the thickness of the dielectric. FoM increases for smaller dielectric thicknesses. The structure with Si3N4 dielectric performs considerably better. Insets give numerical examples for extinction ratio ER, device length L and loss in the system for both Si3N4 and SiO2.

Fig. 5
Fig. 5

SPP mode profile in terms of dominating magnetic and electric field components at the active part of the modulator: Ag/SiO2(40nm)/ITO(8nm)/Ag. The fields are normalized to a cross-section power of 1 W. Similar to the slab structure, handddefine the ITO and dielectric thicknesses, respectively. In addition, h Ag and w SPP describe the thickness and the width of the top silver electrode.

Fig. 6
Fig. 6

Influence of plasmonic 3D waveguide width w SPP on propagation constant (a) and propagation length (b). For comparison, the 2D results from solving Eq. (4) are added (black line).

Fig. 7
Fig. 7

The modulator structure for a proof-of-principle experiment together with the measured extinction ratios versus modulation frequency. (a) 3D schematic of the fabricated device and its lumped element model describing the low-pass characteristic of the device. (b) Scanning electron microscope picture of the device before lift-off (the area taken inside the green contour has been removed after completing the lift-off process). The device length is L = 10 μm with an ITO thickness of 10 nm [19]. (c) Measured extinction ratios as a function of the frequency of the driving electrical signal. It can be seen that the extinction ratio does not depend on the silicon width w. The extinction ratio calculated by the theory is represented as a blue line with the fit parameters ω p = 0.8 × ω p 0 and γ = 2.3 × γ 0 , where ω p 0 and γ 0 are plasma and collision frequencies of ITO from Table 1. (d) Predicted ER for the strong electric fields obtained from the theory using fit parameter ω p and γ.

Tables (1)

Tables Icon

Table 1 The Drude Parameters of ITO and Ag

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d 2 H x ( y ) d y 2 + [ k 0 2 ε ( y ) β 2 ] H x ( y ) = 0 ,
H x ( y ) = A 1 e i k 1 y                       for   < y < 0 H x ( y ) = A 2 e i k 2 y + B 2 e i k 2 y         for         0 < y < h H x ( y ) = A 3 e i k 3 ( y h ) + B 3 e i k 3 ( y h )   for         h < y < h + d H x ( y ) = B 4 e i k 4 ( y d h )               for     h + d < y < +
E z m = i 1 ω ε 0 ε m H x m y E y m = β ω ε 0 ε m H x m
1 + r 12 e i 2 k 2 h 1 r 12 e i 2 k 2 h = k 2 ε 3 k 3 ε 2 [ r 34 e i 2 k 3 d + 1 r 34 e i 2 k 3 d 1 ] ,
L e = 1 α = ( 2 Im [ β ] ) 1
ER = 10 lg ( P on / P off ) = 10 lg ( P 0 e α on L / P 0 e α off L ) = 10 lg ( e | α off α on | L ) = 4.34 × | α off α on | L
ER 1 dB = 1 dB , L 1 dB = 1 4.34 × Δ α 10 V .
FoM = L e / L 1 dB .
Δ ϕ ( y ) = e ( N i ( y ) N 0 ) ε 0 ε ITO .
N i ( y ) = 1 3 π 2 ( 8 π 2 m eff h 2 ) 3 / 2 ( E F + e ϕ ( y ) ) 3 / 2 ,
E F = ( h 2 8 π 2 m eff [ 3 π 2 N 0 ] 2 / 3 ) .
U d = ε ins d ϕ d y | y + h = ε ITO d ϕ d y | y h , ϕ ( y ) 0   for   y ,
ε = ε ω p 2 ω 2 + i ω γ .

Metrics