Abstract

This paper reports the theoretical and experimental investigations on the strain sensing effect of a two dimensions (2D) photonic crystal (PhC) nanocavity resonator. By using the finite element method (FEM) and finite difference time domain (FDTD) simulations, the strain sensitivity of a high quality factor PhC nanocavity was calculated. Linear relationships between the applied strain and the shift in the resonant wavelength of the cavity were obtained. A single-defect silicon (Si) PhC cavity was fabricated, and measurements of the strain sensitivity were performed. Good agreement between the experimental and simulation results was observed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [CrossRef]
  2. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [CrossRef] [PubMed]
  3. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
    [CrossRef]
  4. Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
    [CrossRef]
  5. T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
    [CrossRef]
  6. Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin, “Micro displacement sensor based on line-defect resonant cavity in photonic crystal,” Opt. Express 14(1), 298–305 (2006).
    [CrossRef] [PubMed]
  7. D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
    [CrossRef]
  8. C. Lee and J. Thillaigovindan, “Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator,” Appl. Opt. 48(10), 1797–1803 (2009).
    [CrossRef] [PubMed]
  9. B. Li and C. Lee, “Computational study of NEMS diaphragm sensor using triple nano-ring resonator,” Procedia Eng. 5, 1418–1421 (2010).
    [CrossRef]
  10. T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
    [CrossRef]
  11. T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
    [CrossRef]
  12. T. W. Lu and P. T. Lee, “Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity,” Opt. Express 17(3), 1518–1526 (2009).
    [CrossRef] [PubMed]
  13. D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
    [CrossRef]
  14. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  15. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [CrossRef] [PubMed]
  16. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  17. B. T. Tung, H. M. Nguyen, D. V. Dao, S. Rogge, H. Salemink, and S. Susumu, “Strain sensitivity of a modified single-defect photonic crystal nanocavity for mechanical sensing,” in Sensors, 2010 IEEE, pp. 2585–2588, (Hawaii, Nov. 2010).
  18. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).
  19. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163 (2002).
    [CrossRef]
  20. F. Shimokawa and H. Kuwano, “New high-power fast atom beam source,” J. Vac. Sci. Technol. A 12(5), 2739 (1994).
    [CrossRef]
  21. O. Svelto, Principles of Lasers, 4th ed. (Springer, 2009), Chap. 4.

2011 (1)

T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

2010 (2)

B. Li and C. Lee, “Computational study of NEMS diaphragm sensor using triple nano-ring resonator,” Procedia Eng. 5, 1418–1421 (2010).
[CrossRef]

D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
[CrossRef]

2009 (2)

2008 (3)

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
[CrossRef]

2007 (3)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

2004 (1)

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163 (2002).
[CrossRef]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

1994 (1)

F. Shimokawa and H. Kuwano, “New high-power fast atom beam source,” J. Vac. Sci. Technol. A 12(5), 2739 (1994).
[CrossRef]

Abstreiter, G.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Akahane, Y.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asano, T.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Biallo, D.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Block, I. D.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

Borel, P. I.

Braun, P. V.

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

Bui, T. T.

D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
[CrossRef]

Cao, L.

Chen, C.

T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Choi, W.

T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Cunningham, B. T.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

Dao, D. V.

D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
[CrossRef]

Dau, V. T.

D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
[CrossRef]

De Sario, M.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

De Vittorio, M.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

D'orazio, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Dorfner, D. F.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Finley, J. J.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Forchel, A.

T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
[CrossRef]

Frandsen, L. H.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[CrossRef] [PubMed]

Ganesh, N.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

Grande, M.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Gu, C.

Hata, K.

D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
[CrossRef]

He, Q.

Hofling, S.

T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
[CrossRef]

Hsiao, F.

T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Hurlimann, T.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Jin, G.

Kamp, M.

T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
[CrossRef]

Kjems, J.

Krauss, T. F.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

Kristensen, M.

Kuwano, H.

F. Shimokawa and H. Kuwano, “New high-power fast atom beam source,” J. Vac. Sci. Technol. A 12(5), 2739 (1994).
[CrossRef]

Kwon, S.

T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
[CrossRef]

Lee, C.

T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

B. Li and C. Lee, “Computational study of NEMS diaphragm sensor using triple nano-ring resonator,” Procedia Eng. 5, 1418–1421 (2010).
[CrossRef]

C. Lee and J. Thillaigovindan, “Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator,” Appl. Opt. 48(10), 1797–1803 (2009).
[CrossRef] [PubMed]

Lee, P. T.

Lee, Y. J.

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

Li, B.

B. Li and C. Lee, “Computational study of NEMS diaphragm sensor using triple nano-ring resonator,” Procedia Eng. 5, 1418–1421 (2010).
[CrossRef]

Lu, T. W.

Mai, T. T.

T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Marrocco, V.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Nakamura, K.

D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
[CrossRef]

Noda, S.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Passaseo, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Petruzzelli, V.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Prudenzano, F.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Pruzinsky, S. A.

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

Qiu, M.

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163 (2002).
[CrossRef]

Qualtieri, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Salhi, A.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Schlereth, T. W.

T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
[CrossRef]

Shimokawa, F.

F. Shimokawa and H. Kuwano, “New high-power fast atom beam source,” J. Vac. Sci. Technol. A 12(5), 2739 (1994).
[CrossRef]

Skivesen, N.

Song, B.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Stichel, T.

T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
[CrossRef]

Stomeo, T.

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Sugiyama, S.

D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
[CrossRef]

Sünner, T.

T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
[CrossRef]

Têtu, A.

Thillaigovindan, J.

Xiang, W.

T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Xu, Z.

Yamada, T.

D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
[CrossRef]

Zabel, T.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Zhang, W.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

Adv. Nat. Sci: Nanosci. Nanotechnol. (1)

D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163 (2002).
[CrossRef]

J. Phys. D Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

J. Vac. Sci. Technol. A (1)

F. Shimokawa and H. Kuwano, “New high-power fast atom beam source,” J. Vac. Sci. Technol. A 12(5), 2739 (1994).
[CrossRef]

Langmuir (1)

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

Microelectron. Eng. (1)

T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007).
[CrossRef]

Nat. Mater. (1)

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nature (2)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Procedia Eng. (1)

B. Li and C. Lee, “Computational study of NEMS diaphragm sensor using triple nano-ring resonator,” Procedia Eng. 5, 1418–1421 (2010).
[CrossRef]

Sens. Actuators A Phys. (1)

T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Sens. Actuators B Chem. (1)

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

Other (3)

B. T. Tung, H. M. Nguyen, D. V. Dao, S. Rogge, H. Salemink, and S. Susumu, “Strain sensitivity of a modified single-defect photonic crystal nanocavity for mechanical sensing,” in Sensors, 2010 IEEE, pp. 2585–2588, (Hawaii, Nov. 2010).

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).

O. Svelto, Principles of Lasers, 4th ed. (Springer, 2009), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of 2D PhC structure under stress/strain.

Fig. 2
Fig. 2

Configuration of photonic crystal cavity to investigate strain sensing effect where r/a = 0.333 and lattice constant a = 0.45 nm. The red arrows indicate the launching direction of light used for exciting the resonator.

Fig. 3
Fig. 3

Transmission spectrum of resonant modes showing cavity peaks at 0.2573(a/λ), 0.2733(a/λ), and 0.3037(a/λ). The inset shows the intensity profile of a degenerate mode obtained using FDTD simulations.

Fig. 4
Fig. 4

Deformation of PhC structure under applied strain. In (a) and (c), dashed and solid shapes show the initial and under-strain shape of the PhC, respectively. Changes in the PhC lattice geometry are shown schematically in (b) and (d).

Fig. 5
Fig. 5

Transmission spectrum showing resonant wavelength vs. different strain values.

Fig. 6
Fig. 6

Resonant wavelength shift vs. strain.

Fig. 7
Fig. 7

Fabrication process.

Fig. 8
Fig. 8

SEM images of photonic crystal structure after fabrication. (a) Top view, (b) enlarged image of defective area, (c) in- and out-coupling facet after cleaving.

Fig. 9
Fig. 9

Schematic of experimental setup. (a) Transmission spectral measurement system and (b) mechanical strain loading model.

Fig. 10
Fig. 10

Transmission spectrum of fabricated cavity. The inset shows the near field image observed using an infrared camera from the top of the cavity.

Fig. 11
Fig. 11

Shift in resonant wavelength of cavity due to application of strain.

Fig. 12
Fig. 12

Strain induced shifts in resonant wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε = 6 m g ( l x ) E b h 2 .
G = d λ λ ε .

Metrics