Abstract

We present unique characteristics of subwavelength surface plasmon polaritons in a periodically coupled nanowell structure. The nanowell structure offers high quality internal surface plasmon resonance for sensing applications. Calculated FWHM of the transmission peak is 6 nm and the optical transmission is close to 100% at the resonant wavelength of 815.8 nm. The highly concentrated polaritons in the nanowell are sensitive to surface changes providing a sensitivity of 4800% RIU−1 for optical sensing applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Campion and R. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [CrossRef]
  2. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
    [CrossRef] [PubMed]
  3. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
    [CrossRef]
  4. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [CrossRef]
  5. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25(6), 372–374 (2000).
    [CrossRef]
  6. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
    [CrossRef]
  7. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988),Chap. 8.
  8. W. H. Weber and G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. 6(3), 122–124 (1981).
    [CrossRef] [PubMed]
  9. E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008).
    [CrossRef]
  10. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duayne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. 112, 13958–13963 (2008).
  11. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
    [CrossRef] [PubMed]
  12. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
    [CrossRef] [PubMed]
  13. L. Pang, G. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
    [CrossRef]
  14. F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
    [CrossRef]
  15. H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, “Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration,” J. Appl. Phys. 106(12), 124314 (2009).
    [CrossRef]
  16. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009).
    [CrossRef]
  17. Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
    [CrossRef]
  18. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef]
  19. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36(7), 1540–1546 (1997).
    [CrossRef] [PubMed]
  20. C. V. I. Melles Griot Catalog, (CVIMG, New Mexico 2009).
  21. A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004).
    [CrossRef] [PubMed]
  22. C.-T. Li, T.-J. Yen, and H.-F. Chen, “A generalized model of maximizing the sensitivity in intensity-interrogation surface plasmon resonance biosensors,” Opt. Express 17(23), 20771–20776 (2009).
    [CrossRef] [PubMed]
  23. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
    [CrossRef] [PubMed]
  24. A. Parisi, A. C. Cino, A. C. Busacca, M. Cherchi, and S. Riva-Sanseverino, “Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate,” Sensors 8(11), 7113–7124 (2008).
    [CrossRef]

2009

H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, “Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration,” J. Appl. Phys. 106(12), 124314 (2009).
[CrossRef]

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[CrossRef]

C.-T. Li, T.-J. Yen, and H.-F. Chen, “A generalized model of maximizing the sensitivity in intensity-interrogation surface plasmon resonance biosensors,” Opt. Express 17(23), 20771–20776 (2009).
[CrossRef] [PubMed]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009).
[CrossRef]

2008

A. Parisi, A. C. Cino, A. C. Busacca, M. Cherchi, and S. Riva-Sanseverino, “Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate,” Sensors 8(11), 7113–7124 (2008).
[CrossRef]

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008).
[CrossRef]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duayne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. 112, 13958–13963 (2008).

2007

L. Pang, G. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

2006

2004

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004).
[CrossRef] [PubMed]

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
[CrossRef] [PubMed]

2001

2000

1998

1997

1981

Abell, C.

A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004).
[CrossRef] [PubMed]

Aizpurua, J.

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Borghs, G.

Brandt, D. W.

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Bruckbauer, A.

A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004).
[CrossRef] [PubMed]

Busacca, A. C.

A. Parisi, A. C. Cino, A. C. Busacca, M. Cherchi, and S. Riva-Sanseverino, “Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate,” Sensors 8(11), 7113–7124 (2008).
[CrossRef]

Campion, A.

A. Campion and R. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Capasso, F.

E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Chan, G. H.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duayne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. 112, 13958–13963 (2008).

Chen, H.-F.

Cherchi, M.

A. Parisi, A. C. Cino, A. C. Busacca, M. Cherchi, and S. Riva-Sanseverino, “Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate,” Sensors 8(11), 7113–7124 (2008).
[CrossRef]

Cino, A. C.

A. Parisi, A. C. Cino, A. C. Busacca, M. Cherchi, and S. Riva-Sanseverino, “Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate,” Sensors 8(11), 7113–7124 (2008).
[CrossRef]

Crozier, K.

E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Crozier, K. B.

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[CrossRef]

Cubukcu, E.

E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Diehl, L.

E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Djurišic, A. B.

Ebbesen, T. W.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef]

Elazar, J. M.

Fainman, Y.

L. Pang, G. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

Ford, G. W.

Ghosh, G.

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Guo, J.

H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, “Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration,” J. Appl. Phys. 106(12), 124314 (2009).
[CrossRef]

Halas, N. J.

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Ho, H. P.

Hwang, G.

L. Pang, G. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Kambhampati, R.

A. Campion and R. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Kang, D.-J.

A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004).
[CrossRef] [PubMed]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Klenerman, D.

A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004).
[CrossRef] [PubMed]

Kobayashi, T.

Kong, S. K.

Korchev, Y. E.

A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004).
[CrossRef] [PubMed]

Kundu, J.

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Lagae, L.

Law, W. C.

Le, F.

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Leong, H.-S.

H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, “Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration,” J. Appl. Phys. 106(12), 124314 (2009).
[CrossRef]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef]

Li, C.-T.

Lin, C.

Lindquist, R. G.

H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, “Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration,” J. Appl. Phys. 106(12), 124314 (2009).
[CrossRef]

Linke, R. A.

Lipson, S. G.

Liu, Q. H.

H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, “Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration,” J. Appl. Phys. 106(12), 124314 (2009).
[CrossRef]

Maes, G.

Majewski, M. L.

Nordlander, P.

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Okamoto, T.

Pang, L.

L. Pang, G. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

Parisi, A.

A. Parisi, A. C. Cino, A. C. Busacca, M. Cherchi, and S. Riva-Sanseverino, “Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate,” Sensors 8(11), 7113–7124 (2008).
[CrossRef]

Pellerin, K. M.

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Rakic, A. D.

Ran, B.

Riva-Sanseverino, S.

A. Parisi, A. C. Cino, A. C. Busacca, M. Cherchi, and S. Riva-Sanseverino, “Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate,” Sensors 8(11), 7113–7124 (2008).
[CrossRef]

Schatz, G. C.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duayne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. 112, 13958–13963 (2008).

Slutsky, B.

L. Pang, G. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Smythe, E.

E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Steinvurzel, P.

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[CrossRef]

Tetz, K. A.

Thio, T.

Urzhumov, Y. A.

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Van Dorpe, P.

Van Duayne, R. P.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duayne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. 112, 13958–13963 (2008).

Wang, H.

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Weber, W. H.

Wu, S. Y.

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Yamaguchi, I.

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Yang, T.

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[CrossRef]

Ye, J.

Yen, T.-J.

Yu, N.

E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Zayats, A. V.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Zhao, J.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duayne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. 112, 13958–13963 (2008).

Zhou, D.

A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004).
[CrossRef] [PubMed]

Zou, Y.

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[CrossRef]

ACS Nano

F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Pang, G. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[CrossRef]

Chem. Soc. Rev.

A. Campion and R. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron.

E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008).
[CrossRef]

J. Am. Chem. Soc.

A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004).
[CrossRef] [PubMed]

J. Appl. Phys.

H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, “Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration,” J. Appl. Phys. 106(12), 124314 (2009).
[CrossRef]

J. Phys. Chem.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duayne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. 112, 13958–13963 (2008).

Langmuir

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Opt. Commun.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Sensors

A. Parisi, A. C. Cino, A. C. Busacca, M. Cherchi, and S. Riva-Sanseverino, “Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate,” Sensors 8(11), 7113–7124 (2008).
[CrossRef]

Other

C. V. I. Melles Griot Catalog, (CVIMG, New Mexico 2009).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988),Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross-sectional view of the periodically coupled nanowells on glass, (b) Field distribution at the resonant wavelength.

Fig. 2
Fig. 2

Transmission spectra of the nanowell and rectangular array.

Fig. 3
Fig. 3

(a) Transmission spectra of the nanowell for different periodicities, (b) Transmission spectra of the nanowell for different heights.

Fig. 4
Fig. 4

Transmission spectra of the nanowell for different overlay error values.

Fig. 5
Fig. 5

Calculated intensity variation of the transmitted wave as a function of refractive index changes.

Metrics