Abstract

We present a detailed description of an improved arrayed-waveguide-grating (AWG) layout for both, low and high diffraction orders. The novel layout presents identical bends across the entire array; in this way systematic phase errors arising from different bends that are inherent to conventional AWG designs are completely eliminated. In addition, for high-order AWGs our design results in more than 50% reduction of the occupied area on the wafer. We present an experimental characterization of a low-order device fabricated according to this geometry. The device has a resolution of 5.5 nm, low intrinsic losses (< 2 dB) in the wavelength region of interest for the application, and is polarization insensitive over a wide spectral range of 215 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
    [CrossRef]
  2. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
    [CrossRef]
  3. C. Dragone, “An N x N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
    [CrossRef]
  4. N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “Integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35(16), 2741–2743 (2010).
    [CrossRef] [PubMed]
  5. M. C. Hutley, Diffraction Gratings (Academic, 1982).
  6. C. D. Lee, W. Chen, Q. Wang, Y.-J. Chen, W. T. Beard, D. Stone, R. F. Smith, R. Mincher, and I. R. Stewart, “The role of photomask resolution on the performance of arrayed-waveguide grating devices,” J. Lightwave Technol. 19(11), 1726–1733 (2001).
    [CrossRef]
  7. T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15(11), 2107–2113 (1997).
    [CrossRef]
  8. R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
    [CrossRef]
  9. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [CrossRef]
  10. F. M. Soares, W. Jiang, N. K. Fontaine, S. W. Seo, J. H. Baek, R. G. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in Proceedings of the National Fiber Optic Engineers Conference (Optical Society of America, Washington DC, 2008), paper JThA23.
  11. R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
    [CrossRef]
  12. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
    [CrossRef]
  13. P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
    [CrossRef] [PubMed]
  14. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, “Design and application of compact and highly tolerant polarization independent waveguides,” J. Lightwave Technol. 25(5), 1276–1283 (2007).
    [CrossRef]

2010 (1)

2008 (1)

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[CrossRef]

2007 (1)

2002 (1)

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

2001 (2)

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[CrossRef] [PubMed]

C. D. Lee, W. Chen, Q. Wang, Y.-J. Chen, W. T. Beard, D. Stone, R. F. Smith, R. Mincher, and I. R. Stewart, “The role of photomask resolution on the performance of arrayed-waveguide grating devices,” J. Lightwave Technol. 19(11), 1726–1733 (2001).
[CrossRef]

1997 (1)

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15(11), 2107–2113 (1997).
[CrossRef]

1996 (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

1993 (1)

R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

1991 (1)

C. Dragone, “An N x N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

1988 (1)

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

Abe, M.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

Adar, R.

R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

Akca, B. I.

Beard, W. T.

Bruining, H. A.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[CrossRef] [PubMed]

Carter, E. A.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[CrossRef] [PubMed]

Caspers, P. J.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[CrossRef] [PubMed]

Chen, W.

Chen, Y.-J.

de Ridder, R. M.

Dragone, C.

R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

C. Dragone, “An N x N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

Driessen, A.

Goh, T.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15(11), 2107–2113 (1997).
[CrossRef]

Henry, C. H.

R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

Horne, S.

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[CrossRef]

Ismail, N.

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Kistler, R. C.

R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

Lambeck, P. V.

Lee, C. D.

Lucassen, G. W.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[CrossRef] [PubMed]

Milbrodt, M. A.

R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

Mincher, R.

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Okamoto, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

Peters, F. H.

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[CrossRef]

Pollnau, M.

Puppels, G. J.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[CrossRef] [PubMed]

Roeloffzen, C. G. H.

Sheehan, R. N.

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[CrossRef]

Shibata, T.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

Smith, R. F.

Stewart, I. R.

Stone, D.

Sugita, A.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15(11), 2107–2113 (1997).
[CrossRef]

Sun, F.

Suzuki, S.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15(11), 2107–2113 (1997).
[CrossRef]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Takada, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Wang, Q.

Wörhoff, K.

Electron. Lett. (2)

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Dragone, “An N x N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

J. Invest. Dermatol. (1)

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001).
[CrossRef] [PubMed]

J. Lightwave Technol. (5)

K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, “Design and application of compact and highly tolerant polarization independent waveguides,” J. Lightwave Technol. 25(5), 1276–1283 (2007).
[CrossRef]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

C. D. Lee, W. Chen, Q. Wang, Y.-J. Chen, W. T. Beard, D. Stone, R. F. Smith, R. Mincher, and I. R. Stewart, “The role of photomask resolution on the performance of arrayed-waveguide grating devices,” J. Lightwave Technol. 19(11), 1726–1733 (2001).
[CrossRef]

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15(11), 2107–2113 (1997).
[CrossRef]

R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[CrossRef]

Other (2)

M. C. Hutley, Diffraction Gratings (Academic, 1982).

F. M. Soares, W. Jiang, N. K. Fontaine, S. W. Seo, J. H. Baek, R. G. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in Proceedings of the National Fiber Optic Engineers Conference (Optical Society of America, Washington DC, 2008), paper JThA23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(Color online) (a) Schematic layout of an AWG and (b) schematic of a Rowland grating mounting where the dots indicate the positions of the arrayed waveguides arranged such that the chords have equal projections on the y axis.

Fig. 2
Fig. 2

Anti-symmetric layout of a conventional broadband arrayed waveguide grating having N arrayed waveguides. The free-propagation-regions (FPRs) are indicated schematically.

Fig. 3
Fig. 3

(Color online) (a) Left half and (b) right half of the identical-bend AWG layout, where waveguides are indicated using a bold line; (c) schematic of the complete layout in which both halves are interconnected.

Fig. 4
Fig. 4

Interconnection between the left and right halves of the AWG for high-order designs. The terminal parts of the waveguides of the left and right halves are shown in gray, and are numbered from 1 to N.

Fig. 5
Fig. 5

(Color online) Comparison of the conventional and identical-bend layouts in terms of the occupied area.

Fig. 6
Fig. 6

(Color online) (a) Simulated effect of systematic phase errors on the response of an AWG designed with the conventional layout (red line). These phase errors are not present in the identical-bend layout (black line). Both graphs are for the transverse-electric (TE) polarization; (b) the response of an outer channel of the identical-bend AWG is overlapped with that of the same channel of the conventional AWG to show the difference in passband.

Fig. 7
Fig. 7

(Color online) Calculated systematic phase errors between adjacent waveguides in a conventional AWG design for the transverse-electric (TE) polarization, and for two different values of the minimum bending radius r min. These phase errors are not present in the identical-bend design, whatever value of the minimum bending radius is used (green line).

Fig. 8
Fig. 8

(Color online) Setup used to characterize the AWG. PBS = polarizing beam splitter. In the insets we present two enlarged views of the AWG layout pointing at the locations of the bends of type 1 and 2.

Fig. 9
Fig. 9

Measured spectral response of the AWG for TE polarization.

Fig. 10
Fig. 10

(Color online) Normalized spectral response of the AWG measured for both, TE and TM polarizations, and for three different spectral regions: a) 740–770 nm; b) 870–900 nm; c) 930–960 nm.

Fig. 11
Fig. 11

(a) Simulated spectral response for TE polarization using the 2D beam-propagation-method (BPM) with no phase errors, (b) with random phase errors distributed between 0 and 80 degree.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

l 1 = R + l p 1 + l α + l q 1 l 2 = R + l p 2 + l α + l q 2 + l Δ α + l r 2 ... l i = R + l p i + l α + l q i + ( i 1 ) l Δ α + l r i ...
l p i + l q i + l r i = ( i 1 ) ( a + Δ L 2 ) + l p 1 + l q 1 ( i 1 ) l Δ α .
( R + l p i ) cos ( α + ( i 1 ) Δ α ) + P cos ( α / 2 + ( i 1 ) Δ α ) + ..           + l q i cos ( ( i 1 ) Δ α ) + j = 1 i 1 Δ P cos ( ( i 1 j / 2 ) Δ α ) + l r i = D ,
( R + l p i ) sin ( α + ( i 1 ) Δ α ) + P sin ( α / 2 + ( i 1 ) Δ α ) + ..           + l q i sin ( ( i 1 ) Δ α ) + j = 1 i 1 Δ P sin ( ( i 1 j / 2 ) Δ α ) = H + ( i 1 ) s = H i .
l ' N = R + l ' p N + l α + l ' q N = l 1 + ( N 1 ) Δ L / 2 ,
R sin ( α ) + l ' p N sin ( α ) + P sin ( α / 2 ) = H

Metrics