Abstract

We present characterization results of microscopic platinum wires as bolometers. The wire lengths range from 16 μm down to 300 nm. Thus they are in many cases significantly smaller in size than the wavelength of the radiation from the 1200 K blackbody source they were exposed to. We observe a steep rise in both responsivity ℜ and detectivity D * with decreasing wire size, reaching ℜ = 3.1×104 V/W and D * = 2.7×109 cmHz1/2/W at room temperature for a 300×300 nm2 device. Two significant advantages of such small wires as bolometers are their low power requirement and fast response time. Our numerical estimations suggest response times in the order of nanoseconds for the smallest samples. They could help improve resolution and response of thermal imaging devices, for example. We believe the performance may be further improved by optimizing the design and operating parameters.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
    [CrossRef]
  2. E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
    [CrossRef]
  3. I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
    [CrossRef]
  4. F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005).
    [CrossRef]
  5. F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
    [CrossRef]
  6. F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
    [CrossRef]
  7. S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
    [CrossRef] [PubMed]
  8. Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
    [CrossRef]
  9. A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
    [CrossRef]
  10. C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
    [CrossRef]
  11. R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).
  12. S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge Univ. Press, 1996).
    [CrossRef]
  13. D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
    [CrossRef]
  14. S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
    [CrossRef]
  15. R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
    [CrossRef]
  16. S. Æ. Jónsson, “Nonlinear thermal electric analysis of platinum microheaters,” Master’s thesis, University of Iceland (2009).
  17. H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
    [CrossRef] [PubMed]
  18. L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009).
    [CrossRef] [PubMed]

2009 (2)

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[CrossRef]

L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009).
[CrossRef] [PubMed]

2008 (3)

H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[CrossRef] [PubMed]

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[CrossRef]

A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[CrossRef]

2007 (1)

2005 (2)

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005).
[CrossRef]

F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[CrossRef]

2004 (1)

F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

2003 (2)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[CrossRef]

I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[CrossRef]

2001 (1)

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[CrossRef]

1999 (1)

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[CrossRef]

1998 (1)

E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[CrossRef]

1983 (1)

D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[CrossRef]

Ashley, C. S.

F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

Au, Y.-Y.

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[CrossRef]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[CrossRef] [PubMed]

Baert, K.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[CrossRef]

Boreman, G. D.

F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[CrossRef]

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005).
[CrossRef]

F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[CrossRef]

Chasmar, R.

R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).

Chen, C.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[CrossRef]

Clem, P. G.

F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

Codreanu, I.

I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[CrossRef]

Fiorini, P.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[CrossRef]

Fleetwood, D.

D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[CrossRef]

Giordano, N.

D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[CrossRef]

González, F. J.

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005).
[CrossRef]

F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[CrossRef]

F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[CrossRef]

Green, A.

E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[CrossRef]

Grossman, E. N.

E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[CrossRef]

Hamann, H. F.

L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009).
[CrossRef] [PubMed]

H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[CrossRef] [PubMed]

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[CrossRef]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[CrossRef] [PubMed]

Hermans, L.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[CrossRef]

Illic, B.

F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[CrossRef]

Ingvarsson, S.

L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009).
[CrossRef] [PubMed]

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[CrossRef]

H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[CrossRef] [PubMed]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[CrossRef] [PubMed]

Jones, F.

R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).

Klein, L. J.

Koch, J. A.

E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[CrossRef]

Kogan, S.

S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge Univ. Press, 1996).
[CrossRef]

Kosarev, A.

A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[CrossRef]

Lacey, J. A.

H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[CrossRef] [PubMed]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[CrossRef] [PubMed]

Li, Z.

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[CrossRef]

Lu, R.

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[CrossRef]

Masden, J.

D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[CrossRef]

Mertens, R.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[CrossRef]

Moreno, M.

A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[CrossRef]

Reintsema, C. D.

E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[CrossRef]

Rogalski, A.

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[CrossRef]

Sedky, S.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[CrossRef]

Skulason, H. S.

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[CrossRef]

Smith, R.

R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).

Torres, A.

A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[CrossRef]

Wu, J.

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[CrossRef]

Xiong, B.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[CrossRef]

Xu, G.

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[CrossRef]

Yi, X.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[CrossRef]

Zhao, X.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[CrossRef]

Zuniga, C.

A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[CrossRef]

IEEE Trans. Electron Devices (1)

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[CrossRef]

Infrared Phys. Technol. (3)

F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[CrossRef]

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[CrossRef]

J. Microsc. (1)

H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (1)

A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[CrossRef]

Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[CrossRef]

Sens. Actuators, A (1)

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[CrossRef]

Other (3)

R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).

S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge Univ. Press, 1996).
[CrossRef]

S. Æ. Jónsson, “Nonlinear thermal electric analysis of platinum microheaters,” Master’s thesis, University of Iceland (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscope image of a 4 μm long by 300 nm wide wire showing the four-lead sample structure.

Fig. 2
Fig. 2

Responsivity dependence on the area for the two sets of platinum nano- and microbolometers. Empty circles are samples from set A and filled ones are from set B.

Fig. 3
Fig. 3

RMS noise voltage components and total noise dependence on length for set B samples (constant width of 300 nm).

Fig. 4
Fig. 4

Detectivity dependence on the area for the two sets of platinum nano- and microbolometers. Empty circles are samples from set A and full ones from set B.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R = R 0 ( 1 + α Δ T ) ,
= V P inc ,
= Δ R × I A × Irr ,
D * = × A V n ,
S V , JN = 4 k B R T ,
S V , TCN = 4 k B T 2 I 2 R 0 2 α 2 G ,
S V , 1 / f = V 2 β N 0 f ,
τ = C G .

Metrics