Abstract

We present results of numerical analysis of the Strehl ratio characteristics for the light sword optical element (LSOE). For comparison there were analyzed other optical imaging elements proposed for compensation of presbyopia such as the bifocal lens, the trifocal lens, the stenopeic contact lens, and elements with extended depth of focus (EDOF), such as the logarithmic and quartic axicons. The simulations were based on a human eye’s model being a simplified version of the Gullstrand model. The results obtained allow to state that the LSOE exhibits much more uniform characteristics of the Strehl ratio comparing with other known hitherto elements and therefore it could be a promising aid to compensate for the insufficient accommodation range of the human eye.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Artal and J. Tabernero, “Optics of human eye: 400 years of exploration from Galileo’s time,” Appl. Opt. 49(16), D123–D130 (2010).
    [CrossRef] [PubMed]
  2. B. K. Pierscionek, “What we know and understand about presbyopia,” Clin. Exp. Optom. 76(3), 83–90 (1993).
    [CrossRef]
  3. A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
    [CrossRef] [PubMed]
  4. A. W. Lohmann and D. P. Paris, “Variable Fresnel zone pattern,” Appl. Opt. 6(9), 1567–1570 (1967).
    [CrossRef] [PubMed]
  5. A. Kolodziejczyk and Z. Jaroszewicz, “Diffractive elements of variable optical power and high diffraction efficiency,” Appl. Opt. 32(23), 4317–4322 (1993).
    [CrossRef] [PubMed]
  6. A. N. Simonov, G. Vdovin, and M. C. Rombach, “Cubic optical elements for an accommodative intraocular lens,” Opt. Express 14(17), 7757–7775 (2006).
    [CrossRef] [PubMed]
  7. A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-crystal intraocular adaptive lens with wireless control,” Opt. Express 15(12), 7468–7478 (2007).
    [CrossRef] [PubMed]
  8. G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
    [CrossRef] [PubMed]
  9. G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
    [CrossRef]
  10. R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
    [CrossRef]
  11. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express 19(3), 2347–2362 (2011).
    [CrossRef] [PubMed]
  12. W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y.-H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34(20), 3214–3216 (2009).
    [CrossRef] [PubMed]
  13. H. Lesiewska-Junk and J. Kałuzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract Refract. Surg. 26(4), 562–565 (2000).
    [CrossRef] [PubMed]
  14. O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
    [CrossRef] [PubMed]
  15. J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
    [CrossRef] [PubMed]
  16. B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
    [CrossRef] [PubMed]
  17. P. J. Valle, J. E. Oti, V. F. Canales, and M. P. Cagigal, “Visual axial PSF of diffractive trifocal lenses,” Opt. Express 13(7), 2782–2792 (2005).
    [CrossRef] [PubMed]
  18. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
    [CrossRef] [PubMed]
  19. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26(12), 875–877 (2001).
    [CrossRef]
  20. J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
    [CrossRef] [PubMed]
  21. E. R. Dowski, Jr., andW. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995).
    [CrossRef] [PubMed]
  22. A. Kolodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, “The light sword optical element – a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
    [CrossRef]
  23. G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007).
    [CrossRef] [PubMed]
  24. J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
    [CrossRef] [PubMed]
  25. K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Phot. Lett. Poland 1, 55–57 (2009).
  26. A. Valberg, Light Vision Color (John Wiley & Sons, 2005).
  27. H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Vol. 4, Survey of Optical Instruments (Wiley-VCH, 2008).
  28. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
    [CrossRef]
  29. M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
    [CrossRef]
  30. S. Wittenberg, “Pinhole eyewear systems: a special report,” J. Am. Optom. Assoc. 64(2), 112–116 (1993).
    [PubMed]
  31. J. L. Breger, “Pinhole presbyopic contact lenses,” US Patent 6,283,595 (April 04 2001).
  32. J. T. De Carle, “Bifocal contact lenses,” US Patent 4,704,016 (March 11 1987).
  33. J. H. Roffman, T. R. Poling, and M. Guillon, “Pupil-tuned multifocal ophthalmic lens,” US Patent 5,448,312 (May 09 1995).
  34. V. Mahajan, Aberration theory made simple, (SPIE Press, 1991).
  35. B. W. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
    [CrossRef] [PubMed]
  36. D. R. Williams, G. Y. Yoon, A. Guirao, H. Hofer, and J. Porter, “How far can we extend the limits of human vision,” in Customized corneal ablation: the quest for super vision, S.M. MacRae, R.R. Krueger, and R.A. Applegate, eds. (Slack, 2001), pp.11–32.
  37. P. Artal, “Aging effects on the optics of the eye,” in Age-Related Changes of the Human Eye (Aging Medicine), C.A.P. Cavallotti and L. Cerulli, eds. (Humana Press Inc., 2008), pp.35–44.

2011 (1)

2010 (1)

2009 (2)

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y.-H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34(20), 3214–3216 (2009).
[CrossRef] [PubMed]

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Phot. Lett. Poland 1, 55–57 (2009).

2008 (2)

J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
[CrossRef] [PubMed]

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[CrossRef] [PubMed]

2007 (4)

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[CrossRef]

A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-crystal intraocular adaptive lens with wireless control,” Opt. Express 15(12), 7468–7478 (2007).
[CrossRef] [PubMed]

G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007).
[CrossRef] [PubMed]

2006 (4)

B. W. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
[CrossRef] [PubMed]

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

A. N. Simonov, G. Vdovin, and M. C. Rombach, “Cubic optical elements for an accommodative intraocular lens,” Opt. Express 14(17), 7757–7775 (2006).
[CrossRef] [PubMed]

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[CrossRef] [PubMed]

2005 (2)

P. J. Valle, J. E. Oti, V. F. Canales, and M. P. Cagigal, “Visual axial PSF of diffractive trifocal lenses,” Opt. Express 13(7), 2782–2792 (2005).
[CrossRef] [PubMed]

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[CrossRef] [PubMed]

2003 (2)

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
[CrossRef] [PubMed]

2001 (2)

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[CrossRef] [PubMed]

W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26(12), 875–877 (2001).
[CrossRef]

2000 (1)

H. Lesiewska-Junk and J. Kałuzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract Refract. Surg. 26(4), 562–565 (2000).
[CrossRef] [PubMed]

1995 (2)

1993 (3)

S. Wittenberg, “Pinhole eyewear systems: a special report,” J. Am. Optom. Assoc. 64(2), 112–116 (1993).
[PubMed]

B. K. Pierscionek, “What we know and understand about presbyopia,” Clin. Exp. Optom. 76(3), 83–90 (1993).
[CrossRef]

A. Kolodziejczyk and Z. Jaroszewicz, “Diffractive elements of variable optical power and high diffraction efficiency,” Appl. Opt. 32(23), 4317–4322 (1993).
[CrossRef] [PubMed]

1992 (1)

1990 (1)

A. Kolodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, “The light sword optical element – a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[CrossRef]

1967 (1)

Aljasem, K.

Ares, J.

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[CrossRef] [PubMed]

Ares Garcia, J.

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Phot. Lett. Poland 1, 55–57 (2009).

Ares García, J.

Artal, P.

Äyräs, P.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Bara, S.

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[CrossRef] [PubMed]

J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[CrossRef] [PubMed]

A. Kolodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, “The light sword optical element – a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[CrossRef]

Bará, S.

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Phot. Lett. Poland 1, 55–57 (2009).

J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
[CrossRef] [PubMed]

Cagigal, M. P.

Canales, V. F.

Cathey, W. T.

Cerviño, A.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[CrossRef] [PubMed]

Chi, W.

Cho, S. H.

Ciuffreda, K. J.

B. W. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
[CrossRef] [PubMed]

Croft, M. A.

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[CrossRef] [PubMed]

Davison, J. A.

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[CrossRef] [PubMed]

Dowski, E. R.

Drexler, W.

O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
[CrossRef] [PubMed]

Findl, O.

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[CrossRef]

O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
[CrossRef] [PubMed]

Flores, R.

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[CrossRef] [PubMed]

George, N.

Georgopoulos, M.

O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
[CrossRef] [PubMed]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Glasser, A.

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[CrossRef] [PubMed]

Gomez García, M.

Gorecki, M.

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Honkanen, S.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Jaroszewicz, Z.

Johnson, D.

Kaluzny, J.

H. Lesiewska-Junk and J. Kałuzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract Refract. Surg. 26(4), 562–565 (2000).
[CrossRef] [PubMed]

Kaufman, P. L.

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[CrossRef] [PubMed]

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Kiss, B.

O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
[CrossRef] [PubMed]

Kolodziejczyk, A.

Kriechbaum, K.

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[CrossRef]

Lesiewska-Junk, H.

H. Lesiewska-Junk and J. Kałuzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract Refract. Surg. 26(4), 562–565 (2000).
[CrossRef] [PubMed]

Leydolt-Koeppl, Ch.

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[CrossRef]

Li, G.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Lo, Y.-H.

Lohmann, A. W.

Loktev, M.

Mathine, D. L.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Menapace, R.

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[CrossRef]

O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
[CrossRef] [PubMed]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Mikula, G.

Montés-Micó, R.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[CrossRef] [PubMed]

Oti, J. E.

Paris, D. P.

Petelczyc, K.

Petternel, V.

O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
[CrossRef] [PubMed]

Peyghambarian, N.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Pierscionek, B. K.

B. K. Pierscionek, “What we know and understand about presbyopia,” Clin. Exp. Optom. 76(3), 83–90 (1993).
[CrossRef]

Prokopowicz, C.

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

Qiao, W.

Rainer, G.

O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
[CrossRef] [PubMed]

Rekas, M.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[CrossRef] [PubMed]

Rombach, M. C.

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Seifert, A.

Simonov, A. N.

Simpson, M. J.

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[CrossRef] [PubMed]

Sochacki, J.

Stankiewicz, A.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[CrossRef] [PubMed]

Sypek, M.

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Phot. Lett. Poland 1, 55–57 (2009).

G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007).
[CrossRef] [PubMed]

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
[CrossRef]

A. Kolodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, “The light sword optical element – a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[CrossRef]

Tabernero, J.

Tsai, F. S.

Valle, P. J.

Valley, P.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Vdovin, G.

Wang, B. W.

B. W. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
[CrossRef] [PubMed]

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Wittenberg, S.

S. Wittenberg, “Pinhole eyewear systems: a special report,” J. Am. Optom. Assoc. 64(2), 112–116 (1993).
[PubMed]

Zappe, H.

Zelichowska, B.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[CrossRef] [PubMed]

Zhang, W.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Clin. Exp. Optom. (1)

B. K. Pierscionek, “What we know and understand about presbyopia,” Clin. Exp. Optom. 76(3), 83–90 (1993).
[CrossRef]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[CrossRef]

Int. Ophthalmol. Clin. (1)

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[CrossRef] [PubMed]

J. Am. Optom. Assoc. (1)

S. Wittenberg, “Pinhole eyewear systems: a special report,” J. Am. Optom. Assoc. 64(2), 112–116 (1993).
[PubMed]

J. Cataract Refract. Surg. (4)

H. Lesiewska-Junk and J. Kałuzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract Refract. Surg. 26(4), 562–565 (2000).
[CrossRef] [PubMed]

O. Findl, B. Kiss, V. Petternel, R. Menapace, M. Georgopoulos, G. Rainer, and W. Drexler, “Intraocular lens movement caused by ciliary muscle contraction,” J. Cataract Refract. Surg. 29(4), 669–676 (2003).
[CrossRef] [PubMed]

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[CrossRef] [PubMed]

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

A. Kolodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, “The light sword optical element – a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[CrossRef]

Opt. Commun. (1)

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
[CrossRef]

Opt. Eng. (1)

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Optom. Vis. Sci. (1)

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[CrossRef] [PubMed]

Phot. Lett. Poland (1)

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Phot. Lett. Poland 1, 55–57 (2009).

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Surv. Ophthalmol. (1)

B. W. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
[CrossRef] [PubMed]

Other (8)

D. R. Williams, G. Y. Yoon, A. Guirao, H. Hofer, and J. Porter, “How far can we extend the limits of human vision,” in Customized corneal ablation: the quest for super vision, S.M. MacRae, R.R. Krueger, and R.A. Applegate, eds. (Slack, 2001), pp.11–32.

P. Artal, “Aging effects on the optics of the eye,” in Age-Related Changes of the Human Eye (Aging Medicine), C.A.P. Cavallotti and L. Cerulli, eds. (Humana Press Inc., 2008), pp.35–44.

A. Valberg, Light Vision Color (John Wiley & Sons, 2005).

H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Vol. 4, Survey of Optical Instruments (Wiley-VCH, 2008).

J. L. Breger, “Pinhole presbyopic contact lenses,” US Patent 6,283,595 (April 04 2001).

J. T. De Carle, “Bifocal contact lenses,” US Patent 4,704,016 (March 11 1987).

J. H. Roffman, T. R. Poling, and M. Guillon, “Pupil-tuned multifocal ophthalmic lens,” US Patent 5,448,312 (May 09 1995).

V. Mahajan, Aberration theory made simple, (SPIE Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Eye model assumed in the modeling and its parameters. Gullstrand unaccommodated eye geometry in a background.

Fig. 2
Fig. 2

Shape of the LSOE and aLSOE elements and their scheme of imaging. The infinitesimal angular sector of the element images object from different distance (a). Element has a sharp step in geometrical profile (b) equal to shape’s maximum difference between 0D and 4D lens(c).

Fig. 3
Fig. 3

Optical elements used in simulation. Their diameter was assumed to be equal to 8 mm. The used abbreviations were explained in the text. The optical power corresponding to different areas is marked with the color bar.

Fig. 4
Fig. 4

Strehl ratios for different values of elements diameter and for different values of defocus.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ l ( r , θ ) = r 2 2 [ f 1 + ( Δ f θ / 2 π ) ] ,
Δ l ( r , θ ) = C r 2 + D θ r 2 , where C = 1 / 2 f 1 D = 1 4 π ( 1 f 1 1 f 1 + Δ f ) ,
S = I M a x , Φ / I M a x , Φ = 0

Metrics